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Cg = equilibrium pesticide concentration at exterior of particle 

(M/L^) 

= free solution liquid diffusion coefficient (L^/t) 

Djjj = molecular diffusion coefficient in pore water (L̂ /t) 

Dp = intraaggregate diffusion coefficient (L^/t) 

Dg = intraparticle diffusion coefficient (L^/t) 

= hydrodynamic dispersion coefficient (L^/t) 

D^ fitted hydrodynamic and nonequilibrium dispersion coefficient 
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dso = median grain size diameter (L) 

erfc = complementary error function 
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= first order desorption rate constant (1/t) 

kj = external film transfer coefficient (L/t) 

Kfj. = Freundlich partition coefficient ((L̂ /M)̂ ) 

KQ J, = linear partition coefficient normalized by fraction organic 

carbon content (L^/M) 

= octanol/water partition coefficient 

Kp = linear equilibrium partition coefficient (L^/M) 

kg = first order adsorption rate constant (l/t) 
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INTRODUCTION 

Pesticides have been detected in groundwater formations serving as 

sources for rural and municipal water supplies. These contamination 

episodes may be from point or nonpoint sources. Atrazine (Aatrex) and 

alachlor (Lasso) are two of the most widely used pesticides in Iowa 

(Wintersteen, 1987) and are also two of the most commonly detected 

pesticides in Iowa groundwater formations serving as rural and municipal 

water supplies (Kelley, 1985; Kelley and Wnuk, 1986). These herbicides 

are widely used throughout the midwest (USDA, 1987) and have been 

detected in groundwater in other parts of the United States with reported 

concentrations in the range of 10"^ to 10^ ^g/L (Holden, 1986). In an 

effort to respond to the identification of such contamination episodes, 

it is necessary to understand and be able to predict the movement of 

pesticides in the aquifer matrix. 

Adsorption and desorption are major mechanisms affecting the rate of 

movement of pesticides in the subsurface. By retarding the movement of 

pesticides, adsorption and desorption influence the rate and degree of 

other mechanisms active in the subsurface (e.g., degradation, hydrolysis, 

etc.). A thorough understanding of adsorption and desorption of 

pesticides in aquifer materials is necessary to predict the rate of 

movement of these pesticides through aquifer materials. This will help 

to predict the fate of pesticides in the groundwater, to predict the time 

of appearance of pesticides down gradient (e.g., at a well) and to 

predict the time necessary for "pump and treat" remediation of pesticide 
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contaminated groundwater. 

Much effort has been expended in developing models to predict the 

shapes of pesticide breakthrough curves experimentally observed. The 

simplest modeling approach considers equilibrium adsorption conditions. 

The more sophisticated models consider nonequilibrium due to physical or 

chemical limitations. Most generally, the actual adsorption step is not 

considered to be rate limiting and it is the transport of the pesticide 

to the adsorption site which is considered to be rate limiting. The 

ability of these models to predict pesticide transport without 

calibration to the data needs further investigation. The ability of 

batch studies and estimation techniques to predict the results observed 

in columns also needs further evaluation. 

Due to the expense and health implications of conducting field scale 

research with pesticides, some researchers have used fluorescent dyes as 

surrogates for the pesticides. The majority of the use of fluorescent 

dyes has been as conservative tracers for determining the rate of surface 

water or groundwater flow. The ability of these fluorescent dyes to 

serve as nonconservative tracers for predicting the transport of sorbing 

pesticides needs to be investigated. 

The purposes of this research were to investigate the transport of 

pesticides in a low organic content aquifer material, to evaluate the 

ability of several existing models to predict the observed results and to 

evaluate the ability of two fluorescent dyes (rhodamine WT and 

fluorescein) to serve as sorbing tracers for atrazine and alachlor. 

In this research, laboratory batch tests, column runs and computer 
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modeling were conducted to investigate the following specific research 

objectives : 

1. Evaluate the adsorption of alachlor and atrazine on a low organic 

carbon content alluvial aquifer material. 

2. Determine the competitive adsorption (if any) when atrazine and 

alachlor are present jointly. 

3. Investigate the use of rhodamine WT and fluorescein as adsorbing 

groundwater tracers with a low organic carbon content aquifer 

material. 

4. Evaluate the ability of rhodamine WT and fluorescein to serve as 

adsorbing (nonconservative) tracers for atrazine and alachlor with a 

low organic carbon content aquifer material. 

5. Evaluate the ability of batch studies and estimation techniques to 

predict the level of adsorption experienced in column studies for 

both the pesticides and the dyes. 

6. Compare the ability of two existing models (a simple equilibrium 

model and a more sophisticated physical nonequilibrium model) to 

describe and predict the atrazine and alachlor breakthrough results 

experimentally observed. 
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LITERATURE REVIEW 

Cases of Pesticides in Groundwater 

Pesticides have been detected in groundwater from both point sources 

and nonpoint sources. A point source is defined as a source that can be 

traced to a discrete location (e.g., a pesticide formulator, a landfill, 

a spill). A nonpoint source is defined as a source that is not discrete 

in nature (e.g., fields receiving agricultural application). Several 

cases of groundwater contamination from point and nonpoint sources are 

reviewed. 

Nonpoint sources 

A major nonpoint source of pesticides in groundwater is the 

agricultural application of pesticides to fields. Historically, the loss 

of pesticides with surface runoff water or sediments into surface waters 

was the pathway of concern for pesticide movement. More recently, 

appearance of pesticides in groundwater due to agricultural application 

has become a major concern. 

Kelley (1985) reported on a sampling survey of 128 wells in Iowa 

(representing 58 public water supplies) for synthetic organic 

contaminants (SOC) and pesticides. The wells that were sampled were 

selected based on evidence that organic contaminants may have been 

present. Fifty seven wells serving 33 water supplies were found to be 

contaminated with one or more organic contaminant. Pesticides detected 

and their maximum detected levels (/ig/L) were as follows: alachlor, 
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16.6; atrazine, 10.0; cyanazine, 1.2; metolachlor, 0.6; metribuzin, 4.4 

and fonofos, 0.1. Atrazine was the most commonly detected contaminant. 

Hallberg (1985b) summarized pesticide concentrations detected in the 

groundwater from the Big Spring Basin in northeastern Iowa. The Big 

Spring Basin is a unique watershed in that the groundwater recharged from 

the basin flows into the Big Spring. This basin thus allows the 

investigation of the impacts of agricultural practices on groundwater in 

a closed system. Pesticides detected in the groundwater over the four 

year study and ranges of maximum concentrations (pg/L) were as follows: 

alachlor, 0.2 to 5.0; atrazine, 2.5 to 10.0; cyanazine, 0.7 to 4.6; 

metolachlor, 0.6 to 4.6; metribuzin, 3.6; 2,4-D, 0.2 and fonofos, 0.1 to 

0.35. 

Kelley and Wnuk (1986) discussed the sampling of municipal wells 

along the Little Sioux River in Iowa. Twenty-five wells serving twelve 

public drinking water supplies were sampled. The wells were located in 

alluvial, Pleistocene or bedrock formations. The samples were analyzed 

for the presence of 64 SOC and 35 pesticides. Nine of the 25 wells 

sampled, serving 6 public water supplies, were found to have one or more 

contaminant(s) present. Pesticides were the most frequently detected 

contaminants. Some of the pesticides detected and their maximum 

concentration (pg/L) were as follows: alachlor, 0.2; atrazine, 4.4; 

cyanazine, 0.7; metolachlor, 7.3; metribuzin, 1.1 and terbufos, 12.0. 

Wells in the Little Sioux alluvial system appeared to be the most 

susceptible to contamination. These wells ranged in depth from 26 to 65 

feet while the other formations ranged from 50 to 380 feet in depth. 
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Holden (1986) discussed pesticides and groundwater quality in four 

states, including California, New York and Wisconsin. Pesticides 

detected in California groundwater and maximum concentrations (pg/L) 

included the following: aldicarb, 47.0; aldrin, 18.0; chlordane, 22.0; 

lindane, 46.0; simazine, 0.5 and 2,4-D, 4.0. In New York the most 

commonly detected pesticide was aldicarb. The average concentration of 

aldicarb, when detected, was 23.5 /ig/L (2,056 samples). Aldicarb has 

also been detected in Wisconsin groundwater with the maximum reported 

concentration being 110 pg/L. Alachlor and atrazine have been detected 

in Wisconsin groundwater at levels in excess of 10 /ig/L. 

Point sources 

Pesticides may also enter groundwater from point sources. Examples 

of point sources that may contaminate groundwater include farm-chemical 

supply dealerships, accidental spills and landfills. 

Hallberg (1985a) summarized data of contaminated groundwater in the 

vicinity of farm-chemical supply dealerships in the State of Iowa. 

Pesticides detected in wells or seeps and their concentrations (/ig/L) 

were as follows: alachlor, 145.0; atrazine, 65.0; cyanazine, 36.0; 

metolachlor, 50.0; metribuzin, 8.0; trifluraline, 0.2 and fonofos, 1.3. 

Holden (1986) indicated that Wisconsin has reported point source 

contamination of groundwater by several pesticides. The type of point 

source was not indicated. The pesticides detected and maximum 

concentration (pg/L) were as follows: alachlor, 88; atrazine, 140 and 

metolachlor, 55. 
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Shuckrow et al. (1981) summarized the quality of hazardous waste 

landfill leachates in the United States and discussed treatment 

technologies for these leachates. Among the chemicals commonly found in 

the landfill leachates were pesticides. Some of the pesticides commonly 

detected were DDT, aldrin, dieldrin and endrin. The concentrations at 

which these pesticides were detected ranged from 2.0 to 23.0 pg/L. 

Pesticide transport prediction 

It has been shown that pesticides are entering groundwater supplies 

from both point and nonpoint sources. The appearance of these pesticides 

in groundwater is particularly alarming due to the facts that a large 

percentage of the population of the United States (75% of the population 

of Iowa) relies on groundwater as a drinking water source (Murray and 

Reeves, 1977) and that many of the pesticides appearing in groundwater 

may have health impacts. This has resulted in USEPA proposing drinking 

standard limits for several of these pesticides (AWWA, 1988) . These 

concerns make it vital to be able to predict the transport and fate of 

these pesticides once they have entered the groundwater. The movement of 

pesticides in groundwater is also referred to as solute transport 

(miscible displacement) in porous media. 

Fundamentals of Solute Transport in Groundwater 

The movement of pesticides in the subsurface is dependent in part on 

properties of the soil and the pesticide. At the simplest level, the 

movement of pesticides is concomitant to the flow of the groundwater. It 
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thus becomes necessary to describe the hydrodynamics of groundwater flow. 

Groundwater flow is assumed to consist of advection and dispersion 

components. Often, however, the flow of the pesticides in the soil 

differs from the flow of the groundwater due to interactions between the 

pesticides and the soil. Examples of such interactions are adsorption, 

biological decay, etc. 

Advection and dispersion 

The hydrodynamics of groundwater flow is described by advection and 

dispersion components. Advection (plug flow) is the idealized condition 

that assumes all groundwater moves through the soil at the same rate and 

is a function only of the pore water velocity. The advection component 

of groundwater flow does not consider velocity distributions within the 

pores, the tortuosity of flow through the pores or molecular diffusion. 

These three elements are considered in the dispersion component. The 

advection term alone would predict that the pesticide would appear down 

gradient as a step (go from zero to maximum concentration at a discrete 

time) at a time given by the distance divided by the pore water velocity. 

The incorporation of dispersion into the prediction would result in a 

portion of the pesticide appearing sooner (due to that portion of the 

pores with groundwater velocity greater than the average pore water 

velocity) and a portion of the pesticide appearing later (due to that 

portion of the pores with groundwater velocity less than the average pore 

water velocity). The dispersion component is thus used to describe the 

spreading observed about the step breakthrough predicted by advection 
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(plug flow) alone. The combination of advection and dispersion would 

predict a continuous breakthrough (as opposed to the step breakthrough 

for advection alone) of a sigraoidal shape. Some of the factors affecting 

the amount of dispersion observed include soil particle size 

distribution, pore size distribution, soil packing, pore water velocities 

and chemical molecular diffusion. 

Adsorption and desorption 

Advection and dispersion modeling of solute transport assumes that 

the solute (pesticide) moves with the groundwater and does not interact 

with the soil. For nonpolar pesticides, the organic nature of pesticides 

and the organic content of the soil commonly result in the adsorption of 

the pesticides onto the soil during groundwater flow. Adsorption of the 

pesticides onto the soil acts as a sink for the pesticides until the 

adsorptive capacity of the soil is satisfied. The adsorption of the 

pesticides on the soil will serve to slow down (retard) the appearance of 

the pesticides down gradient. The level of adsorption (and thus level of 

retardation) is a function of the pesticide and the organic content (for 

nonpolar pesticides) of the soil. 

The mentality seems to be prevalent that once the pesticide adsorbs 

to the soil it no longer threatens groundwater resources down gradient. 

However, the adsorption of nonpolar pesticides to soil organic matter has 

been observed to be reversible. This suggests that when the 

concentration of the pesticide in the groundwater decreases (as the 

pesticide front passes) that desorption of the pesticide from the soil 
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phase to the pore water phase will occur. 

Both adsorption and desorption are mechanisms active in the soil 

environment which will amend the solute transport predictions made by the 

advection and dispersion model. This leads to the need for predictive 

models able to describe advection, dispersion and adsorption / 

desorption. 

Other interactions 

Adsorption acts to slow down the movement of pesticides in 

groundwater. This allows more time for the pesticides to experience 

other interactions during transport in the soil environment. For 

pesticides, examples of other interactions that may take place in the 

subsurface include chemical and biological degradation. In the presence 

of these interactions, it would be necessary to include additional 

components to the solute transport model. For purposes of this research, 

it was assumed that adsorption and desorption are the only interactions 

occurring in the soil. Thus, the solute transport model of interest to 

this research contained components for advection (plug flow), dispersion 

and adsorption / desorption. 

Fundamentals of Adsorption and Desorption 

Adsorption and desorption are two major processes affecting the 

transport of pesticides in groundwater. It is vital to have a 

fundamental understanding of these processes in order to understand and 

predict the effect of these processes on pesticide transport. Adsorption 
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is the result of intermolecular forces between the solid phase and the 

solute. 

Intermolecular forces 

It is presently believed that there are four distinct forces of 

nature (Israelachvili, 1985). Two of these forces (strong and weak 

interactions) act between neutrons, protons, electrons and other 

elementary particles and are responsible for holding protons and neutrons 

together in atomic nuclei (strong interactions) and are involved in 

electron emission (weak interactions). The other two forces, 

electromagnetic (electrostatic) and gravitational, are more dominant at 

the atomic size and larger ranges. Electrostatic forces are more evident 

at the atomic and molecular scales and account for intermolecular 

interactions which determine the properties of solids, liquids and gases 

and account for the properties of particles in solution and the nature of 

chemical reactions. Gravitational forces are more evident at larger 

scales and account for the movement of the planets and objects within the 

planets' realm of influence. For purposes of this discussion, 

intermolecular forces (electrostatic forces) are the forces of interest. 

A brief history of the development of the present understanding of 

intermolecular forces, as outlined by Israelachvili (1985), will be 

presented. As scientists began to explore laws to account for 

intermolecular forces, it was believed that one simple law would be 

determined (much as one gravitational law had been determined) . Some of 

the first attempts included the mass of the molecules in the models (no 
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doubt patterned after the gravitational law). Eventually it was realized 

that purely mechanistic views of intermolecular forces could not alone 

account for their behavior. This resulted in the development of 

thermodynamic and probabilistic concepts such as free energy and entropy 

to account for intermolecular behavior. With the advent of quantum 

theory it was possible to understand the origin of intermolecular forces 

and derive expressions for interaction potentials. However, the 

solutions for these expressions are very difficult. Various 

classifications for intermolecular forces have evolved (e.g., ionic, 

covalent, van der Waals, hydrogen bonding, hydrophobic) when, 

fundamentally, all these categories have a common origin (electrostatic 

interactions). One example of the manifestation of intermolecular forces 

is adsorption. 

Adsorption 

Adsorption, absorption and sorption are three terms that refer to 

similar phenomena. Weber (1972) defines adsorption as occurring at an 

interface, absorption as occurring within the adsorbent (solid phase) and 

sorption as including both adsorption and absorption. Often the term 

adsorption is used interchangeably with sorption, such will be the case 

for purposes of this document. Fundamentally, adsorption is the 

concentration of a chemical from one phase (gas or liquid) at the 

interface or internally to another phase (solid). The adsorbate is the 

solute (pesticide) being adsorbed out of the solution (groundwater) and 

the adsorbent (soil) is the solid phase where the concentration of the 
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adsorbate is occurring. 

Historically, adsorption studies were conducted to investigate the 

concentration of gases at solid surfaces. A few of these studies will be 

reviewed to provide background for current research efforts investigating 

the adsorption of pesticides from groundwater. 

Langmuir (1918) investigated the adsorption of gases on the plane 

surfaces of glass, mica and platinum. He stated that the internal 

bonding of the adsorbent (solid phase) left unsaturated surface atoms and 

thus resulted in adsorption of a monolayer of gases to satisfy the 

deficiency. The following assumptions were made by Langmuir in 

developing his conceptual model of adsorption: (1) adsorption occurs at 

points of valency on the surface of the adsorbent, (2) a monomolecular 

layer of adsorption results, (3) all adsorption sites have equal affinity 

for adsorbate and (4) adsorbed molecules do not affect adsorption at 

adjacent sites. 

In 1926, Freundlich published an empirical equation to describe 

adsorption. Benefield et al. (1982) state that the development of this 

equation was based on the assumption that the adsorbent is comprised of a 

heterogeneous surface composed of different classes of adsorption sites 

with each class being of the nature described by Langmuir. 

In 1938, a model was developed by Brunauer et al. that generalized 

the Langmuir model by assuming that molecules were adsorbed in multiple 

layers during adsorption. This model, referred to as the BET model, 

assumed that the adsorbent surface was composed of uniform sites and that 

adsorption at one site does not affect adsorption at neighboring sites. 



www.manaraa.com

14 

The BET model assumed that the energy of adsorption holds the first 

monolayer of molecules but that the condensation energy is responsible 

for the successive layers adsorbed. 

The Freundlich model, or a linear simplification of this model, has 

been most widely used to predict the adsorption of nonpolar pesticides 

from groundwater. For nutrients or metals, the Langmuir model, or 

modifications thereof, have been most widely used. For purposes of this 

research, the linear or Freundlich model will be utilized. 

Adsorption motivation and types 

In a general sense, adsorption may be classified as adsorbent or 

solvent motivated (Weber, 1972). Adsorbent motivated adsorption occurs 

when an attraction occurs between the solute (pesticide) and the 

adsorbent (soil). An example of adsorbent motivated adsorption would be 

a polar or ionizable pesticide (such as diquat or paraquat) interacting 

with the cation exchange sites of clays in a soil. Solvent motivated 

adsorption occurs when the presence of the solute (pesticide) in the 

solvent (groundwater) is not thermodynamically favorable. Such a 

pesticide has a low water solubility and is considered hydrophobic 

(disliked by water). Hydrophobic pesticides will find it more 

thermodynamically favorable to be associated with the organic phase 

(organic matter) of the soil rather than the polar groundwater phase. An 

example of solvent motivated adsorption would be the interaction of 

chlordane (hydrophobic insecticide) with the organic content (organic 

matter) of the soil. 
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The adsorption attachment may be the result of one or a combination 

of several different mechanisms (different categories of electrostatic 

forces). Fundamentally, the adsorption attachment may be classified as 

exchange, physical or chemical (Weber, 1972). Exchange adsorption refers 

to accumulation of the pesticide at the adsorption sites due to the 

electrostatic attraction between the charged sites of the soil and the 

charged sites or polar moieties of the pesticide. Physical adsorption 

(physisorption) is the result of van der Waals attractions between the 

pesticide and the adsorption sites. Chemical adsorption is the result of 

a chemical reaction between the adsorbent (soil) and the solute 

(pesticide). While it is fundamentally expedient to separate the 

adsorption forces into these three categories, in actuality it is 

typically a combination of several or all of these forces that cause the 

adsorption of a given pesticide onto a given soil. Hamaker and Thompson 

(1972) include the following as electrostatic adsorptive forces between 

pesticides and soils: (1) van der Waals - London forces, (2) hydrogen 

bonding, (3) charge transfer, (4) ligand exchange, (5) ion exchange, (6) 

direct and induced ion-dipole and dipole-dipole interactions, and (7) 

chemisorption. These electrostatic forces may be divided up among the 

exchange, physical and chemical categories discussed above. 

Exchange adsorption is the result of coulombic forces of interionic 

attraction. These attractions occur between the charged sites of the 

soil (especially cation exchange sites of clays) and the charged 

functional groups or polar moieties of the pesticide. Under favorable 

conditions the pesticide will exchange for the ions previously adsorbed 
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on the ion exchange sites of the soil (ion exchange). Binding energies 

of up to 50 kilocalories/mole may be experienced for exchange adsorption 

(Hamaker and Thompson, 1972). 

Physical adsorption is the result of van der Waals or London 

dispersion forces. These forces are evidenced for molecules with no 

permanent dipoles or higher order moments and are the result of the 

continuous motion of electrons in an atom or molecule (Rigby et al., 

1986). The continuous motion of the electrons results in temporary 

dipoles or higher order moments for the atom or molecule while on the 

average no moment is present. This temporary (instantaneous) dipole (or 

higher order moment) can in turn induce a dipole (or higher order moment) 

in a neighboring atom or molecule and a net attraction will occur. The 

magnitude of this interaction is the sum of the multipole interactions 

(dipole-dipole, dipole-quadropole, dipole-octopole, quadropole-

quadropole, etc.). The contribution of the dipole-dipole interaction is 

proportional to the minus sixth power of the molecular distance, the 

dipole-quadropole interaction is proportional to the minus eighth power 

of the molecular distance and so forth. Thus, the controlling multipole 

interaction is typically the dipole-dipole interaction (if it is 

present). In the absence of the dipole-dipole interaction the dipole-

quadropole interaction typically becomes dominant (Rigby et al., 1986). 

Energies of adsorption for the van der Waals interactions are generally 

of the order of 1 to 2 kilocalories/mole (Hamaker and Thompson, 1972) . 

The energy of adsorption for physical adsorption is significantly lower 

than typically experienced for exchange or chemical adsorption. For this 
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reason the adsorbate (pesticide) is considered to be free to move from 

adsorption site to adsorption site within the soil (Weber, 1972) and is 

more readily desorbed when the pesticide concentration decreases in the 

groundwater phase (when the pesticide front passes), 

Chemical adsorption occurs as the result of the formation of a 

chemical bond between the pesticide and the soil. The energy of 

adsorption for chemisorption is generally higher than the energy of 

adsorption for exchange or physical adsorption with levels for 

chemisorption commonly exceeding 50 kilocalories/mole and values as high 

as 194 kilocalories/mole having been reported (Hamaker and Thompson, 

1972). This high energy of adsorption suggests that an activation energy 

may be necessary for the reaction to take place and also suggests that 

the pesticide, once adsorbed, is relatively immobile on the soil surface. 

These high energies of adsorption account for the high level of pesticide 

adsorption that can occur at low concentrations for some pesticides. The 

high energy of adsorption also accounts for the continued adsorption that 

occurs at elevated temperatures (provides necessary activation energy) in 

spite of the fact that the adsorption process is assumed to be exothermic 

(Ruthven, 1984). 

The adsorption of many pesticides falls into the category of 

hydrophobic adsorption (adsorption of nonpolar, hydrophobic pesticides). 

This adsorption typically is solvent motivated and the attachment is due 

to physical adsorption. The nature of hydrophobic chemicals was 

originally attributed to "like attracts like", that nonpolar solutes 

(e.g., alkanes - unsubstituted hydrocarbons) prefer to be in nonpolar 
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phases. This assumed that the dislike of hydrophobic chemicals for polar 

solvents was motivated by their preference for hydrocarbon chains. It is 

now believed that the attraction between nonpolar groups plays only a 

minor role in the hydrophobic effect and that it is actually the strong 

attractive forces that occur between water molecules (hydrogen bonds) 

which result in the hydrophobic effect (Tanford, 1980), The 

intermolecular distance between hydrogens and oxygens of adjacent water 

molecules (0.165 nm) is less than predicted by summing the van der Waals 

radii (0.26 nm) but is still larger than the intramolecular covalent bond 

distance between hydrogen and oxygen (0.10 nm) (Israelachvili, 1985). 

Thus, a bond intermediate between the covalent and the van der Waals bond 

is suggested. This intermolecular bond is referred to as the hydrogen 

bond. Water molecules find the formation of these hydrogen bonds 

thermodynamically favorable. Polar or ionic solutes are able to form 

strong bonds with the water which serve to compensate for the disruption 

or distortion of the hydrogen bonds (Tanford, 1980) and thus are highly 

soluble in water. Nonpolar molecules, however, are not capable of 

forming hydrogen bonds. The water molecules will attempt to adjust their 

orientation in an effort to fit the chemical into its structure without 

making it necessary to break a hydrogen bond. However, depending on the 

size of the nonpolar solute, this may not be possible. This causes many 

of the nonpolar organic compounds (pesticides) to be thermodynamically 

unfavorable in the aqueous phase and results in the low aqueous 

solubilities for these pesticides. It is thus seen why adsorption 

resulting from the hydrophobic effect is referred to as solvent (water) 
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motivated adsorption. 

Factors affecting pesticide adsorption in soils 

Having developed a fundamental framework of the adsorptive forces at 

work between pesticides and soils, some of the physical and chemical 

factors within the soil environment which affect the level of adsorption 

will be discussed. Detailed reviews of this subject are available in the 

literature (Bailey and White, 1970; Mortland, 1970; Hamaker and Thompson, 

1972; Calvet, 1980; Karickhoff, 1984) and are beyond the scope of this 

document. A brief summary of several of the soil, solvent (water) and 

adsorbate (pesticide) properties that affect the level of adsorption will 

be presented here. 

Research has shown that, for hydrophobic pesticides, the organic 

content of the soil and the octanol/water partition coefficient for the 

pesticide are able to predict the level of adsorption that will occur for 

a given soil and pesticide (Karickhoff et al., 1979; Rao and Davidson, 

1980; Brown and Flagg, 1981; Miller, 1984). The octanol/water partition 

coefficient (K^^) for a pesticide is determined by placing a pesticide 

into a reactor (separatory funnel) with a polar (water) and relatively 

nonpolar (1-octanol) phase. The reactor is mixed until partitioning of 

the pesticide between the two phases is complete. The concentration of 

the pesticide in each phase is determined and the ratio of the pesticide 

concentration in the octanol phase and the water phase is the 

octanol/water partition coefficient. This parameter indicates the 

hydrophobicity of the pesticide and is thus a relative indicator of the 
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adsorptive potential of the pesticide with an organic phase. The 

fraction organic carbon content (fg^) of the soil provides an organic 

phase in which the hydrophobic pesticide may concentrate. The 

octanol/water partition coefficient (K^^) of the pesticide and the 

fraction organic carbon content (f^^) of the soil have been used in 

empirical relationships to predict the level of adsorption between a soil 

and a pesticide. These empirical relationships will be discussed in a 

later section. 

The pH of a groundwater system may affect the form of functional 

groups both on the pesticide and the soil. Thus, for ionizable 

pesticides, pH may become a significant factor (especially as the pK^ or 

pK^ value of the pesticide - the pH where the pesticide functional group 

changes - is approached). Harris and Warren (1964) found the level of 

adsorption of atrazine to bentonite to be significantly higher at a pH of 

4.1 than at a pH of 8.2 but found adsorption of atrazine to organic 

matter to be relatively independent of pH. The pK^ value for atrazine 

has been reported as 1.7 (Weber et al., 1980). Farmer and Aochi (1974) 

found the level of picloram adsorption to slightly increase for 

decreasing values of pH for six different soils. The pH during this 

study did not go below 5, well above the pK^ value for picloram of 3.6. 

For nonpolar and nonionizable pesticides the pH would be expected to play 

a lesser role in the level of adsorption. 

The temperature of the system may affect the level of adsorption 

realized. The adsorption process is considered to be exothermic 

(Benefield et al., 1982). Thus, based on the enthalpy of the reaction, 
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increasing temperature would tend to decrease the extent of the reaction 

(adsorption). An indirect effect of temperature on adsorption is the 

increasing solubility with increasing temperature. Both the solubility 

and enthalpy of the system would work to predict decreasing adsorption 

with increasing temperatures. However, the rate of the reaction is taken 

to be a function of the necessary activation energy for the reaction and 

increasing temperatures would tend to favor the kinetics of the 

adsorption reaction. Harris and Warren (1964) found increasing levels of 

pesticide adsorption on bentonite with decreasing temperature but found 

the level of pesticide adsorption on organic matter to be relatively 

independent of temperature. Farmer and Aochi (1974) found a very slight 

increase in pesticide adsorption with decreases in temperature on six 

different soils. In general, for the range of temperatures typically 

encountered, the effect of temperature on adsorption is assumed to be 

minor (Weber, 1972). 

The presence of more than one pesticide may affect the level of 

pesticide adsorption due to competition for adsorption sites. Chiou et 

al. (1983) found no evidence of competitive adsorption (partition) when 

more than one nonionic organic (aromatic) compound was present. The 

authors interpreted this to indicate that the concentration at the solid 

interface was the result of solvent motivated partitioning (hydrophobic) 

rather than adsorbent motivated adsorption. Schwarzenbach and Westall 

(1981) found the adsorption of nonpolar organics to be independent of the 

number of solutes present. Abdul and Gibson (1986) found slight 

decreases (10 to 20%) in the level of adsorption for polynuclear aromatic 
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hydrocarbons (PAH) when present as a mixture. It appears that for the 

adsorption of hydrophobic compounds little competitive adsorption would 

be expected. In the case of polar or ionizable pesticides (when exchange 

or chemical adsorption would be more evident), the presence of 

competitive adsorption would be more likely. 

The presence of background ions (and corresponding changes in ionic 

strength) may affect the level of pesticide adsorption in soils. 

Increasing valencies of ions and increasing ionic strength of the 

groundwater would serve to reduce electrostatic repulsions that exist due 

to charges on the soil particles (especially clays and organics). Farmer 

and Aochi (1974) observed increasing levels of picloram adsorption for 

increasing ionic strength (concentration and valency) of the solution. 

The authors attribute this effect to the ionizable nature of the 

picloram. Khan and Khan (1986) found the presence of divalent cations 

to increase the level of adsorption for organophosphorous (ionizable) 

pesticides. For neutral (nonionic) pesticides, changes in the 

electrostatic forces of repulsion of the soil surfaces would not be 

expected to affect the level of adsorption. Fusi and Corsi (1968) 

noticed only slight variations in the level of adsorption of atrazine 

(less than 20%) when the salt concentration was increased from 0.01 N to 

0.5 N at neutral values of pH. 

Other environmental factors affecting the level of pesticide 

adsorption with soils could be discussed, but lie beyond the scope of 

this document. 
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Batch and column adsorption techniques 

Adsorption of pesticides on soils is commonly investigated in the 

laboratory by use of batch or column studies. The batch study consists 

of placing a known quantity of the soil and a known mass of the pesticide 

into a reactor and shaking until equilibrium adsorption is reached. The 

purpose of batch studies is to determine the equilibrium level of 

pesticide adsorption and the shaking serves to eliminate mass transfer 

limitations. The column study more closely mimics the soil environment 

and includes the corresponding mass transfer limitations. A column is 

filled with the soil media, the pesticide solution is introduced at the 

top of the column and the appearance of the pesticide in the effluent of 

the column is monitored. The specific methodologies utilized for 

conducting batch and column studies in this research will be discussed in 

the materials and methods section. 

Modeling of Solute Transport with Adsorption 

Having discussed the fundamental concepts of advection, dispersion 

and adsorption, techniques for mathematically modeling these processes 

will be reviewed. 

Types of modeling approaches 

Various approaches may be utilized in an attempt to model solute 

transport with adsorption. Only mathematical models will be considered 

here (as opposed to physical and analog models). Various mathematical 

models can be classified as follows: (1) conceptual (mechanistic) versus 
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empirical (functional) - based on theoretical derivation from 

fundamentals versus derived from observations without consideration for 

fundamental mechanisms, (2) stochastic versus deterministic - model 

incorporates random nature of process and output varies for a given set 

of inputs, versus discrete output for a given set of inputs (3) static 

versus dynamic - steady state with respect to time for input parameters 

versus time dependent variations of input parameters and (4) spatial 

dimensionality - one-, two- or three-dimensional. The fundamental solute 

transport model to be considered here will be mechanistic, deterministic, 

dynamic and one-dimensional. For a discussion of stochastic modeling the 

reader is referred to Jury (1983) and for a treatment of functional 

modeling the reader is referred to Sposito et al. (1986). Macropore flow 

models will not be discussed here; the reader is referred to Seven and 

Germann (1982), van Genuchten et al. (1984) and Germann and Beven (1985) 

for treatment of this topic. 

One-dimensional solute transport 

The fundamental governing equation for pesticide transport in 

saturated groundwater is the advection, dispersion and adsorption / 

desorption equation. This equation is derived from flux balance 

considerations about an elemental volume and, for the one-dimensional 

flow case, results in the partial differential equation shown in Equation 

1 (Lapidus and Amundson, 1952; Freeze and Cherry, 1979). The development 

of the basic advection dispersion equation assumes that dispersion can be 

described as a Fickian process. This assumption has been criticized 
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where: C =• liquid phase solute concentration (M/L ) 

t = time (t) 
= hydrodynamic dispersion coefficient (L^/t) 

X = dimension of solute transport (L) 
= pore water velocity (L/t) 

Pg = solid phase particle density (M/L ) 
r/ =• pore water fraction (L^/L^) 
q = ratio of solute on solid phase versus in 

liquid phase (M/M) 

(Anderson, 1984) but is widely used. Equation 1 is a parabolic partial 

differential equation and is second order with respect to space (x) and 

first order with respect to time (t). The solution of this governing 

equation will thus require two spatial (boundary) conditions and one 

temporal (initial) condition. For cases of simple boundary conditions 

and adsorption expressions, analytical solutions to this one-dimensional 

equation are available (van Genuchten and Alves, 1982). For more 

complicated boundary conditions or adsorption expressions it may become 

necessary to utilize numerical approximation solutions (finite 

difference, finite element, etc.). 

The terra on the left of Equation 1 is the change of the pesticide 

concentration in the liquid phase within the elementary volume with 

respect to time. The first term on the right of Equation 1 is the 

advection (plug flow) term as noted by the presence of the pore water 

velocity parameter. The second term on the right of Equation 1 is the 
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hydrodynamic dispersion term which accounts for pore water velocity 

gradients, tortuosity of the flow path through the porous media and the 

molecular diffusion of the solute. The third term on the right of 

Equation 1 is the adsorption term which accounts for the loss (or gain) 

of the solute from the liquid phase into the soil phase. Equation 1 thus 

predicts the change in solute concentration as affected by advection, 

dispersion and adsorption. As in the development of all governing 

equations, various assumptions were made in the derivation of Equation 1. 

Some of the assumptions made in the derivation include the following: 

saturated soil conditions, nonconsolidating soil (porosity constant) with 

respect to space and time, one-dimensional flow (pore water velocity only 

in the x dimension), dispersion only in the x dimension, pore water 

velocity and dispersion constant with respect to x and adsorption is the 

only interaction between the solute and the soil. These assumptions are 

often satisfied for laboratory column studies; however, they are less 

likely to apply in field situations. 

The hydrodynamic dispersion coefficient accounts for velocity 

gradients within the pores, the tortuosity of the flow path for flow 

through porous media and the molecular diffusion of the solute. The 

first two elements are functions of the soil configuration and the pore 

water velocity and these two elements are referred to collectively as 

mechanical mixing. Molecular diffusion is a function of the solute and 

is independent of the pore water velocity (although the relative 

significance of the molecular diffusion is a function of pore water 

velocity). Equation 2 demonstrates the relationship commonly used to 
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where: = soil dispersivity (L) 
Djjj = molecular diffusion coefficient (L /t) 

define the hydrodynamic dispersion coefficient. While some researchers 

have included an exponent on the pore water velocity term, it has 

generally been found that the value of this exponent is 1.0 (Gillham and 

Cherry, 1982). The dispersivity (a^) is the soil specific parameter 

that, when combined with the pore water velocity, accounts for the 

mechanical mixing portion of the hydrodynamic dispersion. An increase in 

either the dispersivity of the soil or the pore water velocity will act 

to increase the mechanical mixing portion of the hydrodynamic dispersion 

coefficient. For a given soil, the molecular diffusion portion of the 

hydrodynamic dispersion coefficient becomes significant at low pore water 

velocities (low gradients and/or soils with low hydraulic 

conductivities). The molecular diffusion coefficient is typically on the 

order of 10"^ to 10"^ cm^/hr (Gillham and Cherry, 1982). For most 

laboratory column studies, pore water velocities are in the range of 1 to 

50 cm/hr and soil dispersivities are in the range of .01 to 1.0 cm 

(Freeze and Cherry, 1979). It is only for the very low values of pore 

water velocities and dispersivities that the molecular diffusion 

coefficient becomes significant. In the case where the contribution of 

the molecular diffusion coefficient is relative insignificant. Equation 2 

can be simplified to Equation 3. In most cases Equation 3 is the 
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X a .  

X 
V, 
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form used for defining the hydrodynamic diffusion coefficient (Gillham 

and Cherry, 1982). 

A useful parameter for evaluating the relative significance of the 

advection and dispersion terms is the Peclet (Pe) number. This is a 

dimensionless number (such as the Reynolds number) which indicates the 

relative significance of advection and dispersion in solute transport for 

a given set of conditions. Equation 4 gives the general form of the 

Pe = (4) 

where: Pe — Peclet number 
L = column length (L) 

relationship used to define Pe. The numerator of the Pe parameter 

indicates the advective tendency of the system and the denominator 

represents the dispersive tendency of the system. Thus, high values for 

Pe would suggest advection as dominant and the solute breakthrough curve 

would tend towards a plug flow (step) shape. Low values for Pe would 

suggest that dispersion is dominant and the solute breakthrough curve 

would tend towards a sigmoidal shape - earlier appearance of the solute 

and increased time for complete breakthrough to occur. Figure 1 

demonstrates a comparison of breakthrough curves for Pe values of 5 and 

100 and also demonstrates the retardation (lag) effect of a sorbing 

solute. Substituting for from Equation 3 into Equation 4 yields 
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Figure 1 : Breakthrough curve - effect of Pe and adsorption 
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Equation 5. This demonstrates that, when Equation 3 is valid, the 

L 
Pe = (5) 

value of Pe is independent of the pore water velocity and is a function 

of the column length and the dispersivity of the soil. It can be 

observed from Equation 5 that increasing column lengths favor advection 

and increasing dispersivities favor dispersion. 

Equilibrium versus noneouilibrium adsorption 

The retarding effect of adsorption on the appearance of a solute in 

a breakthrough curve was demonstrated in Figure 1. The last term on the 

right hand side of Equation 1 accounts for the removal of solute from the 

liquid phase due to adsorption. Many researchers have assumed the 

adsorption process to be instantaneous relative to the groundwater flow 

rates and have assumed equilibrium adsorption to be valid. Others have 

observed experimental deviations from equilibrium adsorption predictions 

and have utilized nonequilibrium adsorption expressions to account for 

these deviations. 

Equilibrium Adsorption and Desorption Expressions 

Equilibrium adsorption assumes that the rate of adsorption 

(kinetics) is relatively fast and that the use of an instantaneous 

adsorption expression is justified. Equation 6 shows the adsorption 

process written in terms of a reaction between the soil and the chemical 
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(C) resulting in adsorbed chemical (q). An example of a kinetic 

adsorption expression to describe this reaction is shown in Equation 7. 

The term on the left of Equation 7 defines the time rate of change of the 

amount of the pesticide adsorbed in the solid phase normalized to the 

amount of pesticide in the water phase (q). The forward rate of this 

reaction (adsorption) is taken to be proportional to the solute 

concentration (C) and the reverse rate of this reaction (desorption) is 

assumed to be proportional to q with kg and k^ being the rate 

coefficients for sorption and desorption, respectively. For equilibrium 

conditions, the left hand side of Equation 7 is zero and the expression 

simplifies to Equation 8. At equilibrium, the rates of adsorption and 

desorption are constant (and thus kg and k^ are constant). This allows 

the terms inside of the brackets in Equation 8 to be simplified into an 

overall constant (Kp). Valocchi (1985) and Parker and Valocchi (1986) 

have discussed criteria for determining the validity of the local 

k, a_ 
Soil + C q ( 6 )  

d q  n  
C - kd q 

Ps(i-q) 
k, s (7) 

at 

q 

kd fs(i-%) 
] C* - Kp C* ( 8 )  
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where: kg = first order adsorption rate constant (1/t) 
k^ - first order desorption rate constant (1/t) 
Cg = liquid phase equilibrium concentration (M/L^) 
Kp = linear equilibrium partition coefficient (L^/M) 

equilibrium assumption for a given set of conditions. It can thus be 

seen that equilibrium adsorption is actually a simplifying condition for 

the kinetic adsorption process. When the kinetics of adsorption are not 

limiting, the equilibrium simplification of the adsorption process can be 

successfully applied. 

Linear equilibrium adsorption expression 

Various equilibrium adsorption expressions have been utilized by 

researchers. The simplest form of the equilibrium adsorption expressions 

is the linear equilibrium adsorption expression. This is the expression 

shown in Equation 8 which resulted when equilibrium was assumed for 

Equation 7. Equation 8 is presented again in Equation 9 for the purpose 

of clarity. This expression is referred to as linear equilibrium 

adsorption, linear partitioning, and Henry's adsorption by various 

q - Kp Cg (9) 

researchers. The distinguishing factor of this adsorption expression is 

that a linear relationship is assumed between q and C at equilibrium with 

Kp (K^ used by some researchers) as the proportionality constant. This 

equation suggests that plotting of a range of q versus values on 

arithmetic scales would result in a linear plot with a slope of Kp. A 

plot of q versus at constant temperature is known as an adsorption 
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isotherm. An example of a linear adsorption isotherm is given in Figure 

2. If the isotherm plot is not linear on arithmetic paper, a nonlinear 

adsorption expression is suggested (such as the Freundlich isotherm). 

Some researchers have found the assumption of linear equilibrium 

adsorption to be valid for pesticides and soils (Brown and Flagg, 1981) 

while others have observed nonlinear adsorption isotherms (Hamaker and 

Thompson, 1972; Rao and Davidson, 1980). Even when nonlinearity is 

observed at higher concentrations, the isotherm is often observed to be 

linear at lower concentrations. 

Linear isotherms at lower concentrations, with nonlinearity becoming 

evident at higher concentrations, is consistent with Langmuir's 

conceptual model of adsorption. This model assumes a finite number of 

adsorption sites each with equal affinity for the adsorbate (pesticide). 

As more of the adsorption sites become occupied, the probability of the 

pesticide mass still in solution finding one of the remaining adsorption 

sites becomes less favorable. This results in nonlinearity of the 

isotherm at higher concentrations (at higher concentrations a smaller 

fraction of the pesticide originally in solution ends up adsorbed to the 

soil). Another conceptual model, based on a distribution of adsorption 

sites with varying affinities for the adsorbate, would also predict 

nonlinearity of the isotherm at higher concentrations. The most 

favorable adsorptive sites would be filled first with less favorable 

sites being utilized at higher concentrations. At lower concentrations 

it may be that only the most favorable sites are utilized, predicting 

linear adsorption isotherms at lower concentrations. The reduction in 
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incremental adsorption with increasing adsorbate concentrations would 

result in the adsorption isotherm being nonlinear (less overall 

efficiency of adsorption) at higher equilibrium concentrations. 

Some researchers have found adsorption isotherms for a solute to be 

linear over the entire solubility range of the solute (Chiou et al., 

1983; Mingelgrin and Gerstl, 1983). Chiou et al. (1983) suggest that the 

lack of isotherm curvature at equilibrium concentrations of 60 to 90% of 

solubility for the solute indicates hydrophobic motivated adsorption 

(partitioning) rather than adsorbent motivated adsorption. This 

construct has some basis for solvent motivated adsorption which is 

basically a partitioning of the adsorbate between two phases and, in some 

situations, is independent of the adsorption sites. Mingelgrin and 

Gerstl (1983), however, state that for chemicals with low solubility, the 

conclusions of Chiou et al. (1983) may be inaccurate. For compounds with 

low solubility, the solubility range may not be great enough to cause 

nonlinearity of the isotherm due to the low level of adsorption realized. 

This low level of adsorption may be inadequate to cause nonlinearity, in 

agreement with the discussions of the Langmuir model and the distribution 

of adsorption sites model reviewed above. Thus, the conclusions of Chiou 

et al. (1983) are not adequate to support that the adsorption isotherm 

for nonionic organics will always be linear and that a linear isotherm 

over the solubility range of the chemical indicates solvent motivated 

(hydrophobic) adsorption (partitioning). 

Incorporation of the linear equilibrium adsorption expression into 

the governing partial differential equation (Equation 1) requires an 
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expression for the 3q/3t term (the last term on the right of Equation 1). 

The 3q/3t term can be expanded as shown in Equation 10. Substituting for 

the 3q/3C term (as follows from Equation 9) results in Equation 11. 

3q 3q 3C 
= (10) 

3t 3C 3t 

3q 3C 

3t 3t 
Kp (11) 

Substituting Equation 11 into the last term of Equation 1 and collecting 

the 3C/3t terms on the left hand side results in Equation 12. The values 

inside the brackets on the left hand side of Equation 12 are constants 

and can be simplified into a single constant (r^), as shown in Equation 

13. This term (r^) is referred to as the retardation factor, as it is 

the factor that differentiates solute transport with linear adsorption 

from solute transport of a nonadsorbing (conservative) solute. 

Simplifying Equation 12 by substituting for r^ results in Equation 14. 

For a value of r^ = 1.0 (K^ = 0), Equation 14 simplifies 

Pg(i-q) 3c 3^c ac 
[1 4- Kp] _ - v^ (12) 

n  a t  3x 3x 

Ps(l-%) 
[1 + Kp] (13) 

where: r^ = retardation factor 



www.manaraa.com

37 

ac dÎQ ac 
rf = Dx r ' ""x (14) 

3t d x  d x  

to the advection dispersion equation with no reactions. For simple 

boundary conditions, analytical solutions are available for Equation 14. 

Equation 15 is an example of one such analytical solution (Freeze and 

Cherry, 1979) with the initial and boundary conditions as specified in 

Equations 16 through 18. Usage of this analytical solution 

* ̂f " t v^ X X rj + v^ t 
= 0.5 [erfc ( —) + exp ( ) erfc ( —) ] (15) 

CO 2(0% rg t)l/^ 2(0% r^ t)V2 

G (x,0) =0.0 x > 0 (16) 

C (O.t) =• CO t > 0 (17) 

C (=o,t) =0.0 t > 0 (18) 

where; erfc = complementary error function 

for r£ = 1.0 will provide the analytical solution for nonadsorbing 

(conservative) solutes. For utilization of numerical approximation 

solutions to Equation 14, the lower boundary condition (Equation 18 

above) can be modified to Equation 19 (where L is the length of the 

column). Neither Equation 18 nor Equation 19 is exact for laboratory 

ac 
= 0.0 X = L (19) 

d x  



www.manaraa.com

38 

or field conditions. However, the errors introduced by these assumed 

boundary conditions are similar and minimal under typical conditions 

(Miller, 1984). 

Freundlich equilibrium adsorption expression 

In the case where the adsorption isotherm is nonlinear, it is 

necessary to utilize a nonlinear equilibrium adsorption expression. 

Figure 3 demonstrates isotherms plotted for one set of data and two 

subsets of the same data. This figure points out the danger of 

extrapolating data beyond the experimental range from which the data were 

collected. Individual plots for the two subsets of the data can appear 

to be linear while when the two subsets are combined it becomes apparent 

that the data is nonlinear. Extrapolating the linear results from the 

lower range to the higher concentrations would have resulted in higher 

values of q predicted than would actually occur. This would result in 

the prediction that the soil would have a greater adsorptive capacity for 

the pesticide than it actually does. Thus, the pesticide would appear 

down gradient sooner than predicted. Rao and Davidson (1979) observed 

this when attempting to extrapolate information from pesticide adsorption 

at the Mg/L range to the mg/L range. Equilibrium studies at the higher 

concentrations resulted in nonlinear isotherms with Freundlich exponents 

in the range of 0.75 to 0.92 while previous work at the lower 

concentrations had indicated linear adsorption. Modeling efforts using 

linear equilibrium parameters predicted a greater lag in the appearance 

of the pesticide than observed. Utilizing the Freundlich nonlinear 
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adsorption expression in the modeling resulted in improved predictive 

capabilities. 

The Freundlich equilibrium adsorption expression is the most 

commonly utilized nonlinear equilibrium adsorption expression for 

organics and soils (Karickhoff et al., 1979; Rao and Davidson, 1980; 

Karickhoff, 1984). The Langmuir adsorption expression has found greater 

utilization for electrolytes and soils (e.g., nutrients, metals) (Harter 

and Baker, 1977; Veith and Sposito, 1977; Sposito, 1984; Brown and Combs, 

1985). The Freundlich expression is shown in Equation 20. It is 

observed that when the Freundlich exponent (N) is equal to 1.0 that 

Equation 20 is the same as Equation 9 above with the same as . The 

Freundlich expression requires the determination of two parameters 

and N). These parameters are typically determined by plotting q versus 

Cg on log-log paper. Equation 21 shows the log form of the Freundlich 

q = Kfj. C/ (20) 

log q =. log Kfj. + N log Cg (21) 

where: = Freundlich partition coefficient ((L^/M)^) 
N = Freundlich exponent 

expression. The slope of the log-log plot of q versus Cg is N and the 

value of q at Cg = 1.0 (log Cg = 0.0) is 

Incorporation of this adsorption expression into the governing 

partial differential equation (Equation 1) requires an expression for the 

aq/3t term. For the Freundlich isotherm this expression is as shown in 
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Equation 22. Making use of Equation 10 for 3q/3t, substituting Equation 

22 into Equation 1 and consolidating the dC/dt terms on the left hand 

side results in Equation 23. The terms inside the bracket on the left 

aq _ , ac 
= N Kfr Cg (22) 

3t at 

2c 

3t d x ^  "  d x  

P^a-Tf) ac a'^c ac 

+ « %r Ce ""^1 «X -J- - (23) 

hand side of Equation 23 are not constant, Cg is specific to the given 

situation. It may become necessary to utilize numerical approximation 

solution techniques for this governing equation. 

Other equilibrium adsorption expressions 

Other nonlinear equilibrium adsorption expressions besides the 

Freundlich expression have seen use by researchers. The Langmuir, BET 

and Gibbs adsorption models are examples of other nonlinear adsorption 

models utilized by researchers (Bailey and White, 1970). The Langmuir 

model, and variations thereof, have found widespread utilization in 

considering the transport of electrolytes (e.g., nutrients, metals) in 

soils (Harter and Baker, 1977; Veith and Sposito, 1977; Brown and Combs, 

1985). These equilibrium adsorption models were not utilized during this 

study. 
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Estimating adsorption of pesticides on soils 

Adsorption isotherms are determined in the laboratory by using a 

series of reactors with varying ratios of soil mass to solvent chemical 

concentration and shaking until equilibrium adsorption is known to exist 

(often 24 hours is used). The equilibrium pesticide concentration in the 

liquid is determined for each reactor and the pesticide adsorbed to the 

soil is calculated by mass balance. Each reactor produces a point on the 

isotherm (plot of q versus C^). Figure 2 shows an example of a linear 

adsorption isotherm. 

Due to the time and expense required to determine equilibrium 

adsorption parameters for all possible combinations of soils and 

pesticides, much research has been conducted investigating relationships 

capable of predicting the linear adsorption coefficients based on readily 

available or easily obtainable parameters. For nonionic pesticides and 

soils, the main predictive parameters isolated are the fraction organic 

carbon content (f^g) of the soil and the octanol-water partition 

coefficient (K^^) for the pesticide (Bailey and White, 1970; Karickhoff 

et al., 1979; Rao and Davidson, 1980; Brown and Flagg, 1981). 

Bailey and White (1970) attribute the importance of the soil organic 

carbon content in the level of pesticide adsorption to the fact that the 

organic matter of the soil has the highest combined cation exchange 

capacity and surface area of the soil size separates. Hamaker and 

Thompson (1972) list typical values of f^^ for surface soils as high as 

0.08 while alluvial sand aquifers have been reported to have f^^ values 

as low as 0.0002 (Schwarzenbach and Westall, 1981; Abdul, Gibson and Rai, 
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1986; Bouchard et al., 1988). 

The octanol-water partition coefficient is a parameter which 

describes the partitioning of a pesticide between a polar phase (water) 

and a relatively nonpolar phase (1-octanol). The octanol-water 

partitioning is likened to the partitioning (solvent motivated 

adsorption) of a pesticide between the groundwater and the organic carbon 

content of the soil. One of the advantages of the use of the octanol-

water partition coefficient is that this parameter is widely available 

for many compounds (Leo et al., 1971; Hansch and Leo, 1979; Rao and 

Davidson, 1980; Lyman, 1982). Table 1 shows a partial listing of 

values compiled by Rao and Davidson (1980), In the event that measured 

values are not available for a given pesticide, Lyman (1982) has 

summarized estimation methods for predicting values for a chemical 

based on either fragment constants or other solvent/water partition 

coefficients for the chemical. Some researchers have attempted to 

correlate the adsorption of a pesticide to its aqueous solubility. 

Karickhoff et al. (1979) state that the octanol-water partitioning more 

closely parallels the pesticide adsorption in the soil system and thus 

proves to be a better estimator than the aqueous solubility. 

Normalizing of linear partition coefficients (K^) by the fraction 

organic carbon content of the soil has been shown to reduce the 

variations in the resulting partition coefficient (K^^). This 

normalization is demonstrated in Equation 24. The merit of this 

Koc - Kp / foe (24) 
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Table 1. Log values for various pesticides' 

Pesticide Log K ow 

Herbicide : 

Alachlor 2.64 
Atrazine 2.33 
Diuron 2.81 
Simazine 1.94 
2,4-D 2.64 
2,4,5-T 0.85 

Insecticide : 

Aldicarb 0.70 
Chlordane 3,32 
DDT 5.57 
Dieldrin 3.69 
Lindane 2.81 

^Taken from Rao and Davidson (1980). 
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normalization has been supported by research in which the organic content 

of the soil was removed and significant decreases in the level of 

adsorption was realized (Weber et al., 1983; Miller, 1984). Karickhoff 

et al. (1979) investigated the adsorption of chemicals from two chemical 

classes (PAH and chlorinated hydrocarbons) and three natural river and 

lake sediments. Linear adsorption was observed and the expression shown 

in Equation 25 was proposed. Brown and Flagg (1981) investigated the 

adsorption of chemicals from the triazine and dinitroaniline families 

with natural lake sediments and observed linear adsorption isotherms. 

Combining their data with that of Karickhoff et al. (1979), Brown and 

Flagg (1981) developed the expression shown in Equation 26. Other 

log Kgg - 1.00 log Ko„ - 0.21 (25) 

log Kgg - 0.937 log Ko„ - 0.006 (26) 

researchers have successfully applied these relationships to predict 

measured linear adsorption coefficients using alluvial aquifer materials 

with low organic content (Schwarzenbach and Westall, 1981) and pesticides 

(Miller, 1984). 

From the above relationships, given the value for a pesticide 

and the f^^ value of the soil, an estimate of the value and thus the 

adsorption of the pesticide on the soil can be made. While the ease of 

obtaining and f^^ values makes the use of these expressions 

attractive, caution must be taken in applying them. Banerjee et al. 

(1985) found that at f^^ values less than 0.002 or clay content to 
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ratios greater than 60 the mineral surfaces (clays) may become the 

dominant soil fraction. The cation exchange capacity may become dominant 

when considering ionic or polar pesticides, such as diquat or paraquat 

(Bailey and White, 1970). It is thus important to understand the theory 

behind the preceding relationships and apply them only when the situation 

justifies their use. 

Desorption and hysteresis of desorption 

Often the mentality seems to exist that once the pesticide is 

adsorbed that it no longer poses a threat to the groundwater. However, 

pesticide adsorption to soil organic matter has been observed to be 

reversible. The reversibility of pesticide adsorption indicates physical 

adsorption (physisorption) as opposed to chemical adsorption 

(chemisorption) of the pesticide to the soil with physical adsorption 

having lower energies of attachment. When the pesticide concentration in 

the soil pore water decreases (as the pesticide front passes), desorption 

of the pesticide from the solid phase to the pore water phase occurs (the 

free energy gradient is from the soil to the groundwater). Modeling 

efforts often assume that desorption is completely reversible (the 

desorption curve is symmetrical to the adsorption curve). Several 

researchers have observed asymmetry (hysteresis) in the desorption curve 

(Swanson and Dutt, 1973). Swanson and Dutt (1973) found that the 

desorption data could be described by the Freundlich relationship with 

the value of N^ds/^es being 2.3. 

Hysteresis of desorption can be evaluated in laboratory batch 
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studies in conjunction with conducting adsorption isotherm studies. Upon 

attainment of equilibrium adsorption in a reactor, the supernatant of 

each reactor is removed and replaced with pesticide free water and shaken 

until equilibrium desorption occurs. This process is repeated for each 

reactor resulting in a series of desorption data points for each original 

adsorption data point. Thus, each reactor from the adsorption study 

results in a desorption isotherm. Figure 4 shows an example of an 

adsorption isotherm and three desorption isotherms (indicating hysteresis 

of desorption). The triangles in Figure 4 correspond to the data points 

(reactors) that are used to establish the adsorption isotherm. Each 

triangle is the starting point of a desorption isotherm. The squares 

along each desorption isotherm correspond to desorption data points which 

are determined as outlined above. If desorption was completely 

reversible (no hysteresis of desorption), the desorption data points 

would fall on the adsorption isotherm. 

The effect of hysteresis of desorption on a breakthrough curve is 

shown in Figure 5. Figure 5 shows one graph in which hysteresis of 

desorption is modeled and one graph in which desorption is considered as 

symmetrical. The graphs demonstrate the loss of symmetry when including 

hysteresis of desorption. Much remains to be learned about the nature, 

kinetics and modeling of desorption and its influence on the transport of 

pesticides in groundwater. It is apparent that this phenomena will 

greatly affect the time and volume of groundwater necessary for "pump and 

treat" technologies and for determining the time necessary for a slug of 

pesticides to pass a given point (e.g., a well). 
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Nonequilibritam Adsorption and Desorption Expressions 

Early research showed that equilibrium adsorption expressions were 

not always able to predict accurately the results observed in column 

studies with the greatest deviations occurring at higher pore water 

velocities (Kay and Elrick, 1967; van Genuchten et al., 1974; Valocchi, 

1985). In attempting to predict the nonequilibrium adsorption 

experimentally observed, it is necessary to have a conceptual framework 

of the adsorption process and to isolate the rate limiting step(s). The 

adsorption process is considered to consist of three basic steps (Weber, 

1972; Benefield et al., 1982). First, the adsorbate must diffuse from 

the aqueous phase (bulk liquid) to the soil or aggregate surface (film 

transport). Second, the adsorbate must diffuse through the intra-

aggregate or intraparticle pores to the adsorption site (intraparticle 

diffusion). Third, the adsorbate undergoes the actual adsorption step 

(adsorption). This conceptualization is demonstrated in Figure 6. Rate 

limitations by the film transport and/or the intraparticle diffusion 

steps would be classified as physical nonequilibrium while rate 

limitations of the adsorption step would be classified as chemical 

nonequilibrium. Figure 7 illustrates the difference in the shapes of 

breakthrough curves for equilibrium and nonequilibrium conditions. 

Chemical versus physical nonequilibrium 

The first attempts by researchers to describe nonequilibrium 

adsorption during solute transport assumed the adsorption step was rate 
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limiting. It was felt that the higher pore water velocities did not 

allow sufficient contact time (residence time) for the adsorption to 

reach equilibrium. A later hypothesis was that the actual chemical 

adsorption step was not limiting but that diffusion of the pesticide from 

the aqueous phase (bulk liquid) to the final adsorption site becomes 

limiting at higher pore water velocities (physical nonequilibrium). 

While fundamentally physical and chemical nonequilibrium approaches are 

different, some researchers have argued that it is difficult to 

distinguish between the two processes by evaluating experimental data or 

by modeling attempts (van Genuchten, 1981; Nkedi-Kizza et al., 1984; 

Skopp, 1986). 

A complete review of the chemical and physical nonequilibrium 

expressions that have been proposed is beyond the scope of this effort. 

The interested reader is directed to other references for nonequilibrium 

adsorption expressions not covered (Travis and Etnier, 1981; Rao and 

Jessup, 1983). The goal here will be to briefly review some of the 

nonequilibrium adsorption expressions which have been proposed in an 

effort to establish the types of modeling approaches which have been 

utilized. Specific details of experimental conditions for column studies 

and solution techniques for the models will not be covered. The reader 

is directed to the original references for these details. 

Chemical nonequilibrium expressions 

Davidson and McDougal (1973) proposed the use of a first order 

kinetic adsorption expression as shown in Equation 7. This expression is 
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first order with respect to both C and q with rate coefficients for 

adsorption and desorption (kg and k^, respectively). These rate 

coefficients were determined by the authors by calibrating (fitting) the 

model with the observed data. This first order expression reduces to the 

linear adsorption expression at equilibrium (3q/3t = 0.0) and thus 

assumes that the adsorption is linear and completely reversible (N^^^ = 

Ndes = 1.0). Pesticides evaluated in the study were fluometuron, 

picloram and prometryne and a Norge loam soil was utilized. Earlier 

appearance of the pesticide breakthrough curves was observed with 

increasing pore water velocities (0.57 to 5.6 cm/hr). The use of the 

kinetic adsorption expression was able to predict the leftward shift of 

the breakthrough curve but did not predict the shape of the breakthrough 

curve. 

Hornsby and Davidson (1973) utilized a kinetic adsorption expression 

which was first order with respect to q but order with respect to C. 

This expression, as shown in Equation 27, simplifies to the Freundlich 

expression at equilibrium. The expression was used in the model in 

= kg C N . kj q (27) 
3t Pg(l-%) 

such a way that hysteresis of desorption (N^gg x N^dg) could be modeled. 

The pesticide fluometuron, a Norge loam soil and pore water velocities of 

0.6 and 5.5 cm/hr were utilized in this study. The authors found the use 

of asymmetric desorption aided in the modeling of the tailing elution 

curve. The authors concluded that, while the kinetic relationship did 
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assist in describing the nonequilibrium situation, the fit was not 

significantly better than the equilibrium model. 

van Genuchten et al. (1974) evaluated the ability of three different 

adsorption models (two kinetic and one equilibrium) to predict the 

movement of picloram through a Norge loam soil. The equilibrium model 

utilized was the Freundlich expression. The kinetic adsorption 

expressions utilized by the authors included Equation 27 above and 

Equation 28 after Lindstrom et al. (1971). The model by Lindstrom et al. 

(1971) includes the parameter b which is the surface stress coefficient 

(g/^g) as described by Fava and Eyring (1956). Five 

5q kg f) C 
= [kçj exp (b q)] [ exp (-2 b q) q] (28) 

3t k^ (l-%)Pg 

different pore water velocities were investigated in the range of 0,6 to 

6.0 cm/hr. The inclusion of hysteresis of desorption improved the 

predictive capabilities of the models. Nonequilibrium breakthrough was 

evidenced with increasing pore water velocities. Rate parameters 

determined by fitting breakthrough curves at a lower pore water velocity 

were not able to predict the breakthrough curves experienced at higher 

pore water velocities. Since the adsorption rate constants should be 

independent of the pore water velocity, this lack of predictive ability 

led the authors to suspect the validity of the adsorption expressions 

utilized. Sensitivity analyses were conducted for the kinetic models 

using a wide range of adsorption rate constants and the resulting 

breakthrough curves were compared to the experimentally observed curves. 
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It was apparent that the kinetic models alone were not sufficient to 

predict the shapes of breakthrough curves experimentally observed. This 

led the authors to suspect diffusion limited adsorption sites as the 

cause for the nonequilibrium breakthrough curves observed. 

Cameron and Klute (1977) discussed the use of a combined equilibrium 

and kinetic adsorption (two site or bicontinuum) model. This approach 

was justified by the authors based on heterogeneities present in the 

soil. The authors state that quite different processes, such as rapid 

adsorption on the soil organic matter (equilibrium) and slow adsorption 

on mineral surfaces (kinetic), may be involved in the overall adsorption 

process. The authors state that diffusion limited sites could fall into 

the kinetic (physical) site category. Atrazine breakthrough data 

collected by others were utilized and it was found that the two site 

model provided good predictive capabilities. Use of a single site model 

(equilibrium or kinetic) for the same data did not provide good 

predictive capabilities. The authors state that one disadvantage of this 

approach is the need to fit the parameters to the data. It would be 

preferable to be able to determine the parameters separate from the 

experimental data they are to describe. 

Rao et al. (1979) investigated the use of two site (bicontinuum) 

models to describe nonequilibrium breakthrough curves. Two conceptual 

models using the bicontinuum concept were investigated in this study. In 

both models one of the soil sites was assumed to experience instantaneous 

nonlinear equilibrium while the second site was assumed to be described 

by nonlinear reversible kinetics (chemical) in one conceptual model and 



www.manaraa.com

by diffusion controlled kinetics (physical) in the other model. The 

physical nonequilibrium bicontinuum model will be discussed in the next 

section. The nonlinear reversible kinetic expression utilized is as 

shown in Equation 27 above and the equilibrium expression utilized was 

the Freundlich expression. Some fraction of the adsorption sites (F) was 

assumed to participate in equilibrium adsorption while the remainder of 

the sites (1-F) was assumed to participate in kinetic (physical or 

chemical) adsorption. Data from Rao and Davidson (1979) for atrazine and 

2,4-D and three soils were utilized for evaluating the models. Two 

concentration levels for each pesticide were evaluated (50 and 5000 mg/L 

for 2,4-D and 5 and 50 mg/L for the atrazine). Parameters determined by 

fitting the model to the breakthrough data at the lower concentration 

were used to predict the results at the higher concentrations with good 

success. However, the rate parameters determined by curve fitting did 

not agree well with values determined experimentally by others. This 

discrepancy resulted in uncertainty as to the mechanistic accuracy of 

this model. 

Phvsical nonequilibrium expressions 

As researchers began to realize that chemical nonequilibrium 

expressions were not able to describe and/or predict the experimentally 

observed data, the utility of physical nonequilibrium expressions 

received increased attention. Davidson and McDougal (1973), Hornsby and 

Davidson (1973) and van Genuchten et al. (1974) are examples of early 

research efforts that found chemical nonequilibrium expressions to be 
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inadequate and suggested the investigation of physical nonequilibrium 

expressions. The fact that researchers often observed pesticide 

adsorption to be virtually complete in batch kinetic studies in less than 

one hour (Leenher and Alrichs, 1971) also supported the conclusion that 

the adsorption step was not rate limiting. 

Skopp and Warrick (1974) discussed a two-phase model for describing 

solute transport of sorptive solutes in soils. The two phases considered 

by the authors were the mobile phase (bulk liquid) and the stationary 

phase (boundary layer of pores). Transport in the mobile phase was 

assumed to occur by advection and dispersion while transport through the 

stationary phase was assumed to be due to diffusion (advection was 

assumed to be negligible in this phase). It was assumed that the 

diffusion across the stationary phase to the adsorption sites is the rate 

limiting step in the adsorption process. 

van Genuchten and Wierenga (1976) developed a model to describe the 

mass transfer of solute in sorbing porous media. The model development 

involved dividing the soil matrix into five regions: (1) air spaces, (2) 

mobile (dynamic) water located in the larger (inter-aggregate) pores, (3) 

immobile (stagnant) water located inside aggregates and at the contact 

points of aggregates and/or particles, (4) dynamic soil, located 

sufficiently close to the mobile water phase for assumed equilibrium to 

exist between solute in mobile phase and the soil phase and (5) stagnant 

soil region, where adsorption by soil is diffusion limited through 

immobile liquid. Equation 29 was developed from these considerations. 

In Equation 29, the subscript m refers to mobile phase and im refers to 
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immobile phase. The mass transfer between the mobile and immobile phases 

was considered to be first order, as shown in Equation 30. Sensitivity 

analyses were conducted for this model with a range in shapes of 

predicted breakthrough curves observed. These predicted breakthrough 

, ac* acin aq* aqi* 
^m + ^im + ^ ̂ b + (1 - f) Pb 

at at at at 

aCm 
- (2*) 

d x  

'im + (1 - f) Pb («m - W (30) 
at at 

where: g = mobile phase water content (L^/L^). 

'Tm immobile phase water content (L^/L^) 
f = fraction adsorption sites in dynamic region 
Py = bulk soil density (M/L^) 
a' = first order mass transfer coefficient (1/T) 

curves include shapes similar to those experimentally observed but which 

previous modeling attempts had been unsuccessful in predicting. Parker 

and van Genuchten (1984) produced a bulletin discussing the use of this 

model (including later additions). 

van Genuchten et al. (1977) utilized the model of van Genuchten and 

Wierenga (1976) to model the transport of 2,4,5-T through a clay loam 

soil. Pore water velocities evaluated ranged from 0.17 to 0.71 cm/hr. 

Parameters were fitted to the data with good agreement between observed 

and modeled results. It was found that the inclusion of intra-aggregate 
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diffusion was more significant in fitting the data than inclusion of 

desorption hysteresis. However, no attempts were made to utilize 

parameters developed under one set of conditions to predict results for a 

separate set of conditions (the validity of the fitted parameters was not 

established). 

Rao et al. (1975) discussed the use of a capillary bundle model for 

describing solute transport in an aggregated soil. The model enabled the 

use of several classes of pore sizes (a bundle of pores was treated as 

different sized capillary tubes) and thus allowed the use of pore water 

velocity distributions rather than necessitating the use of an average 

pore water velocity. The pore size distribution was determined from soil 

water characteristic data. The breakthrough curves predicted with the 

capillary bundle model were extremely skewed and did not agree well with 

observed breakthrough data. The variations in the observed and predicted 

results' were attributed to the failure of the capillary bundle model to 

include mixing of the solute between adjacent flow paths. The authors 

stated that the prediction of the dependence of solute transport on soil 

pore geometry necessitates a method for describing the pore accessibility 

and interconnectedness of pore sequences. 

Rao et al. (1979) investigated the use of two-site (bicontinuum) 

models to describe nonequilibrium breakthrough curves. One of the sites 

was considered to experience equilibrium adsorption and the other site 

was considered to experience nonequilibrium (physical or chemical) 

adsorption. The chemical nonequilibrium case was discussed above. The 

physical nonequilibrium condition suggests that diffusion limited sites 
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exist. Diffusion from the mobile phase to the immobile phase was assumed 

to be first order (see Equation 30 above). In this case, the bicontinuum 

model is conceptually the same as the two phase model of van Genuchten 

and Wierenga (1976). Data from Rao and Davidson (1979) for atrazine and 

2,4-D and three soils were utilized for evaluating the model. Two 

concentration levels for each pesticide were evaluated (50 and 5000 mg/L 

for 2,4-D and 5 and 50 mg/L for the atrazine). Parameters determined by 

fitting the model to the breakthrough data at the lower concentration 

were used to predict the results at the higher concentrations. Although 

the location of the breakthrough curve was predicted with fairly good 

success, the model overestimated the tailing (slow approach to C/CO of 

0.0) of the breakthrough curve at the higher concentration. Fitting the 

model to the higher concentration data resulted in parameters of 

questionable value. This led the authors to question the applicability 

of the equilibrium - first order diffusion nonequilibrium bicontinuum 

model to the systems investigated. 

De Smedt and Wierenga (1984) discussed the solute transport of 

O C 
nonadsorbed CI' through a column of nonaggregated glass beads. The 

beads ranged in size from 74 to 125 ^m. Unsaturated conditions in the 

column resulted in early breakthrough and tailing, much as experienced 

under saturated aggregated conditions. The breakthrough curves could be 

modeled by fitting the dispersion coefficient to the data, but this 

required the use of a dispersion coefficient twenty times greater than 

observed under saturated conditions at a similar pore water velocity. It 

was possible to use dispersion coefficients from saturated conditions and 
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use a mobile - immobile model with first order diffusion between the two 

phases to model the observed breakthrough data successfully under 

unsaturated nonaggregated conditions. 

Miller (1984) proposed a physical nonequilibrium model which 

incorporated film transport and intraparticle diffusion (see Figure 6 for 

conceptualization) as the source of the nonequilibrium breakthrough. 

This effort differed from ones previously discussed in that diffusion was 

considered to be Fickian rather than first order. This approach has been 

labeled the Fickian physical nonequilibrium model. This model was 

developed using mass transfer and mass balance concepts and resulted in 

the relationships shown in Equations 31 and 32. Aquifer sand materials 

9q 1 5 3q 
= Dg [r2 ] (31) 

a t  d r  d r  

d q  
kg (C - Cg) = Dg @r = R (32) 

ar 

where: = intraparticle diffusion coefficient (L^/T) 
r = radial dimension for particle (L) 
kg = external film transfer coefficient (L/T) 
Cg = equilibrium pesticide concentration at exterior 

of particle (M/L ) 
R = radius of particle (L) 

and lindane were utilized to investigate this modeling approach with the 

necessary model parameters determined in completely mixed batch reactors. 

Good predictive capabilities for the laboratory column studies were 

observed using parameters determined in a completely mixed batch reactor. 
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Crittenden et al. (1986) developed a Fickian physical nonequilibritun 

model similar to that of Miller (1984). The model of Crittenden et al. 

(1986) was based on the presence of aggregates (or diffusion limited 

regions in the absence of physical aggregates) in the soil which caused 

the nonequilibrium breakthrough curves (see Figure 6 for 

conceptualization). This model included intraaggregate diffusion both in 

the pore space and along the pore surfaces. The authors referred to the 

model as the dispersed flow, pore and surface diffusion (DFPSDM) model. 

The authors conducted sensitivity analyses on the model to determine the 

relative significance of dispersion, film transport and intraparticle 

(intraaggregate) diffusion on the shape of the breakthrough curve. The 

authors concluded that under most conditions the intraparticle diffusion 

would be the limiting case. The authors also discussed techniques for 

determining the model parameters separate from the column data by 

estimation techniques. 

Hutzler et al. (1986) utilized the model of Crittenden et al. (1986) 

to predict the movement of TCE and bromoform in a sandy loam. The model 

was calibrated to the data by fitting the aggregate radii. However, the 

model was not able to predict the leftward shift of the breakthrough 

curve or the increased asymmetry when the pore water velocity was 

increased from 12 to 36 cm/hr. Hutzler et al. (1986) concluded that, 

while the DFSPDM appeared to be an improved mechanistic model, their work 

suggested that an additional kinetic mechanism should be included in the 

model. 

Roberts et al. (1987) utilized the model of Crittenden et al. (1986) 
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in an attempt to predict the data of Nkedi-Kizza et al. (1982). 

Estimation techniques were utilized for predicting the necessary 

parameters separate from the column data with good predictive results 

realized. The authors concluded that hydrodynamic dispersion governed 

the nonequilibrium breakthrough curves at low velocities and that 

internal pore diffusion dominated at higher pore water velocities (3 to 

143 cm/hr). The external mass transfer was concluded to play a minor 

role under all the experimental conditions investigated. 

It is not necessary for a soil to be aggregated for diffusion 

limited physical nonequilibrium to be experienced. Bouchard et al. 

(1988) designed their column experiments to minimize aggregation effects 

on solute transport. Investigating the movement of atrazine, diuron and 

hexazinone in low organic carbon aquifer materials, the authors found the 

level of nonequilibrium to increase with increasing organic carbon 

content of the soil. The adsorption was determined to be linear for the 

solutes studied in the concentration ranges investigated eliminating 

nonlinear isotherms as the cause for the nonequilibrium breakthrough 

curves observed. It was thus concluded that the nonequilibrium was 

caused by diffusion limitations into the organic carbon matrix of the 

soils investigated. Lee et al. (1988) came to similar conclusions 

concerning nonequilibrium breakthrough curves observed while 

investigating the movement of TCE and p-xylene in two sand aquifer 

materials. Bouchard et al. (1988) noted a leftward shift in the 

breakthrough curves for atrazine and diuron with increasing pore water 

velocities (2.4, 8.1 and 22.6 cm/hr). 
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Equivalence of noneauilibrium expressions 

While physical and chemical nonequilibrium expressions are 

mechanistically different, researchers have questioned the ability to 

distinguish between these processes based on experimental data or 

modeling efforts. 

Nkedi-Kizza et al. (1984) discussed the equivalence of two 

conceptual models. The models investigated were both two site 

(bicontinuum) models with both models having instantaneous sorption on 

one of the sites and adsorption on the other site being either physical 

or chemical nonequilibrium. The equilibrium expression utilized was the 

linear reversible model. The physical nonequilibrium model used 

incorporated first order diffusion limitations and the chemical 

nonequilibrium model used incorporated first order reversible kinetics. 

Introduction of dimensionless variables into each model resulted in 

exactly the same dimensionless form of the equations. Thus, both models 

proved equally capable of describing the experimental results. The 

authors concluded that it is not possible from the breakthrough curves 

alone to determine which conceptual model is accurate. Skopp (1986) 

further supported this conclusion in his discussion of time dependent 

chemical processes in soils. 

Valocchi (1985) evaluated the time moments for various equilibrium 

and nonequilibrium solute transport models. The nonequilibrium models 

investigated included the diffusion (Fickian) physical nonequilibrium, 

the first order physical nonequilibrium and the first order linear 
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chemical nonequilibrlum. The temporal moments serve as indicators of the 

shape of the breakthrough curves. The first, second and third moments 

describe the mean breakthrough time (retardation), the degree of 

spreading (dispersion) and the degree of nonequilibriura (asymmetry), 

respectively (Lee et al., 1988). Valocchi (1985) showed that the first 

moment for all models had the same dimensionless expression. Thus, all 

models predict the same average time of appearance of the breakthrough 

curve. It is the spreading of the breakthrough curve about the average 

time of appearance that varies from model to model. By comparing the 

second moments for equilibrium and nonequilibriura it was possible to 

establish relative criteria for when equilibrium conditions would be 

satisfied and also when chemical and physical nonequilibriura models would 

be equivalent. 

Parker and Valocchi (1986) further discussed the utilization of 

time moment analyses for solute transport studies. The authors stated 

that the nonequilibriura shapes of breakthrough curves observed could be 

attributed to hydrodynaraic spreading of the breakthrough front and 

spreading of the front due to diffusion limitations. The use of an 

effective dispersion coefficient was proposed. This effective dispersion 

coefficient would account for all the spreading (hydrodynaraic and 

physical) about the mean time of appearance of the solute. The mean time 

of appearance would be established using an equilibrium adsorption 

expression and the spreading would be accounted for by using an effective 

dispersion coefficient. This would greatly simplify the solution 

techniques for the resulting equilibrium model versus the models for 
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nonequilibrium solute transport. Lee et al. (1988) found the technique 

of the effective dispersion coefficient to provide good results for the 

prediction of breakthrough curves using TCE and p-xylene in two sand 

aquifer materials. 

Adsorption Studies with Atrazine and Alachlor 

The purpose of this section is to review some of the results 

investigating the adsorption of the herbicides atrazine and alachlor (to 

be investigated in this study) on soils. 

Batch results - atrazine 

Hamaker and Thompson (1972) provided a review of adsorption studies 

with pesticides and soils. Data for atrazine included linear and 

Freundlich parameters. For a range of equilibrium atrazine 

concentrations of 0.7 to 12 mg/L and a range of f^^ values of 0.001 to 

0.44, the Kp values ranged from 1 to 74 and the values ranged from 50 

to 400 with an average value of 105 ± 3.3. Table 2 summarizes the 

Kgg values from this and other studies. The Freundlich exponents (N) 

ranged in value from 0.52 to 0.98 with the lower values of N (increased 

nonlinearity) corresponding to the higher organic content soils (mucks). 

Swanson and Dutt (1973) investigated the adsorption and desorption 

of atrazine on a sandy loam (Mohave) and a silty loam (Walla Walla) soil. 

The sandy loam soil had an f^^ value of 0.0026 and the silty loam had an 

fgg value of 0.015. Atrazine was added to the batch reactors at 

concentrations of 5, 10, 15, 20 and 25 mg/L with equilibrium 
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Table 2. values for pesticides (atrazine and alachlor) and 
fluorescent dyes (rhodaraine WT and fluorescein) 

Reference 

Atrazine; 

105 ± 3.3 Haraaker and Thompson (1972) 

80 Swanson and Dutt (1973) 

122 ± 25 Rao and Davidson (1980) 

216 Brown and Flagg (1981) 

48 to 121 Bouchard and Wood (1988) 

64 to 237 Bouchard et al. (1988) 

Alachlor: 

191 ± 49 Peter and Weber (1985) 

Rhodaraine WT 

1000 to 1600 Trudgill (1987) 

Fluorescein 

108 Oraoti and Wild (1979) 
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concentrations ranging from 5 to 18 mg/L for the low f^^ soil (sandy 

loam) and 3 to 13 mg/L for the high f^^ soil (silty loam). The lower 

removals of the aqueous phase atrazine for the sandy loam as well as the 

greater q values indicate that less atrazine was adsorbed on the sandy 

loam than the silty loam. This would agree with the lower f^^ value for 

the sandy loam. The isotherm for the sandy loam was observed to be 

linear while the isotherm for the silty loam was observed to be 

nonlinear. The lesser adsorption realized for the lower f^^ soil and the 

smaller organic carbon content (and concomitant increase in adsorption 

site availability) would predict a higher probability for a linear 

adsorption isotherm. The value for the sandy loam soil was 0.21 and 

the Kjj, and N values for the silty loam soil were 2.61 and 0.85, 

respectively. The value for the sandy loam is calculated to be 80. 

Desorption isotherms were observed to be nonreversible. The Freundlich 

expression was shown to be capable of describing the nonreversible 

desorption with the Nads'^des f&tio being 2.3. 

Rao and Davidson (1979) evaluated the adsorption of atrazine on 

three soils (silty clay loam, sandy loam and fine sand) ranging in f^^ 

values from 0.0056 to 0.039. Adsorption studies were conducted by 

varying the initial atrazine concentration in the adsorption reactor from 

zero to the solubility limit (33 mg/L). Linear and Freundlich 

expressions were utilized to describe the adsorption data. The average 

Kgg value for the soils was 121.8 ± 25. The Freundlich exponent (N) 

ranged from 0.73 for the high f^^ soil to 1.04 for the low f^^ soil. 

Brown and Flagg (1981) evaluated the adsorption of atrazine on the 
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bottom sediments of a pond (f^g = 0.0327). The equilibrium concentration 

of atrazine in the batch reactors ranged from zero to 16 mg/L (one-half 

the aqueous solubility). The resulting value for the atrazine and 

the bottom sediment was 216. 

Bouchard and Wood (1988) utilized column studies to investigate the 

adsorption of atrazine on three soils with f^^ values of 0.00033, 0.0025 

and 0.0069. The values for the three soils and atrazine (determined 

from the retardation factors) were 48, 83 and 121, respectively. 

Bouchard et al. (1988) utilized batch studies for the same soils and 

atrazine concentrations not exceeding 12% of aqueous solubility (4 mg/L) 

and determined values of 237, 106 and 64, respectively. 

Batch results - alachlor 

Peter and Weber (1985) investigated the adsorption of alachlor on 

nine soils with organic contents ranging in f^^ values from 0.003 to 

0.051. Equilibrium alachlor concentrations investigated in the batch 

studies were as high as 16 mg/L with the average value for the soils 

of 191 ± 49. 

Column results - atrazine 

Elrick et al. (1966) investigated the transport of atrazine using 

column studies and a silt loam soil. The influent atrazine concentration 

utilized was 21.9 mg/L and the pore water velocity utilized was 0.64 

cm/hr. Nonequilibrium breakthrough was observed and the authors 

attributed this to intra-aggregate adsorption sites or dead end pores. 
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Rao and Davidson (1979) have shown atrazine adsorption to be nonlinear in 

this concentration range and this could also account for the 

nonequilibrium shape of the breakthrough observed. 

Swanson and Dutt (1973) investigated the transport of atrazine using 

column studies with a sandy loam (Mohave) and a silty loam (Walla Walla) 

soil. The sandy loam soil had an value of 0.0026 and the silty loam 

had an f^^ value of 0.015. The atrazine was added dry to the top layer 

of the soil and the appearance of the atrazine in the effluent was 

monitored. Unit gradients were maintained for both soils and flow rates 

of 0.3 cm/hr for the silty loam and 1.5 cm/hr for the sandy loam were 

observed. The authors utilized the Freundlich adsorption expression and 

found good agreement between predicted and observed results. 

Rao and Davidson (1979) evaluated the column breakthrough curves of 

atrazine at two concentrations (5 and 50 mg/L) in a fine sand soil (f^^ = 

0.0056). The atrazine utilized was Aatrex 80W (80% wettable powder). 

The pore water velocity, 0.22 cm/hr, was selected to allow near 

equilibrium conditions to occur. The breakthrough appeared earlier for 

the higher atrazine concentration (50 mg/L) than the lower concentration. 

This agreed with the nonlinear isotherm observed during batch studies. 

The nonequilibrium shape of the breakthrough curves was attributed to the 

nonlinear nature of the adsorption and thus the changing capacity of the 

soil for the atrazine as the breakthrough progressed. 

Bouchard et al. (1988) evaluated the breakthrough curves for 

atrazine in a fine sand aquifer material (f^g = 0.007) at three pore 

water velocities (2.4, 8.1 and 22.6 cm/hr). The breakthrough was 
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observed to appear sooner (shifted to the left) with increasing pore 

water velocity. 

Column results - alachlor 

While batch and leaching studies have been reported for alachlor, no 

column breakthrough studies were found in the literature for alachlor 

with surface or subsurface soils. 

Fluorescent Dyes as Groundwater Tracers 

Due to the expense and health implications of conducting field scale 

studies with pesticides, researchers have investigated the use of tracers 

to mimic the pesticide movement. One class of compounds which has been 

utilized for groundwater tracing purposes is fluorescent dyes. The 

majority of the research investigating fluorescent dyes as groundwater 

tracers has centered on their use as conservative (nonadsorbing) tracers 

to indicate the rate of groundwater flow. Less work has centered on 

determining the ability of fluorescent dyes to serve as sorbing tracers 

to mimic the flow of pesticides. 

Fluorescent dves 

Fluorescent dyes are those dyes which, when exposed to ultraviolet 

light, fluoresce - adsorb the lower wavelength ultraviolet light and emit 

a higher wavelength light which is in the visible range. This property 

of the fluorescent dyes allows them to be detected at the ^g/L and ng/L 

ranges using a fluorometer. 
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Fluorescent dves as water tracers 

Feuerstein and Selleck (1963) investigated the behavior of three 

fluorescent dyes, including fluorescein, for use in water tracing 

studies. The following parameters were found to affect analysis of the 

dyes; (1) temperature, (2) salinity, (3) pH, (4) background level of dye 

and (5) turbidity or suspended solids. Fluorescein exhibited high 

photochemical decay and high levels of background fluorescence were 

encountered when analyzing for fluorescein. The fluorescence of 

fluorescein was seen to decrease at pH values below 5. The fluorescein 

was the least adsorbed of the three dyes investigated on suspended solids 

and algae. 

Smart and Laidlaw (1977) discussed the use of eight fluorescent 

dyes, including rhodamine WT and fluorescein, in water tracing studies. 

The fluorescence of both rhodamine WT and fluorescein was shown to be a 

function of temperature. The fluorescence of the dyes was seen to 

decrease at low pH and was observed to be a function of the ions causing 

the pH change and the buffering system. For fluorescein, pH values below 

6 resulted in decreases in fluorescence and for rhodamine WT pH values 

below 5 resulted in decreases in fluorescence. The pH effect was 

attributed to the ionization of the dyes or to structural changes to the 

dye with changing pH. Fluorescein exhibited no decrease in fluorescence 

with increasing salinity while rhodamine WT fluorescence was observed to 

decrease with increasing salinity. The background fluorescence of water 

samples was shown to be more significant for fluorescein (especially in 
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the presence of organic matter) than rhodamine WT. Photochemical decay 

was observed to be significant for fluorescein (greater for sunlight than 

artificial light) but relatively insignificant for rhodamine WT. 

Rhodamine WT was observed to be more strongly adsorbed to organic and 

inorganic solid phases than fluorescein. The organic phases (sawdust, 

humus, heather) were observed to result in more adsorption than inorganic 

phases (clays, limestone, orthoquartzite) for both rhodamine WT and 

fluorescein. 

Omoti and Wild (1979) investigated the use of fluorescein as a 

groundwater tracer. In a column study utilizing a loamy sand soil (85% 

sand, 10% clay and 2% organic matter - f^^ = 0.012) and a pore water 

velocity of 2.44 cm/hr, the value was determined to be 1.3. The 

corresponding value of is 108. 

Bencala et al. (1983) studied the use of rhodamine WT as a water 

tracer in a mountain stream environment. Batch studies between the 

rhodamine WT and streambed sediments resulted in a Kp value of 5.6. The 

fgg for the sediment was not given. 

Trudgill (1987) investigated the use of fluorescent dyes for soil 

water tracing. Batch experiments with rhodamine WT and a silty loam soil 

(fgg of 0.034 to 0.053) resulted in a Kp value of 54. This corresponds 

to a Kgg value of 1000 to 1600 for the rhodamine WT. 
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MATERIALS AND METHODS 

The experimental efforts in this study utilized two aquifer 

materials, two herbicides (atrazine and alachlor) and two fluorescent 

dyes (rhodamine WT and fluorescein) in batch and column studies to 

investigate the research objectives (as stated in the introduction). The 

materials and methods used are discussed in this section. 

Aquifer Materials 

Two alluvial aquifer sand samples were obtained for use in this 

study. The first soil sample was obtained south of Ames, Iowa, in a sand 

layer thirty feet below the ground surface with a clay layer directly 

above the sand layer. This sample was obtained during the drilling of a 

water supply well using the rotary bucket technique. The second soil 

sample was obtained from a site located on the Hallets Pit property north 

of Ames, Iowa. The site where the sample was obtained had not been 

utilized by the pit as a production site. A backhoe was utilized to cut 

through the topsoil and a clay layer to the desired sand layer, located 

six feet below the ground surface. The sample was obtained prior to 

sloughing of the topsoil into the hole and prior to appearance of 

groundwater into the hole in an effort to prevent organic carbon content 

entering the sample from these sources. Table 3 lists values for 

relevant parameters of the soils with respect to this study. The sieve 

analysis was conducted according to ASTM procedures (1988). The fraction 

organic content was conducted according to the modified Mebius method 
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Table 3. Soil parameters for alluvial aquifer materials 

Parameter South Ames Hallets Pit 

Median grain size diameter -

150 (mm) 

Uniformity Coefficient -

^60/^10 

Percent sand (%) 

Percent silt (%) 

Percent clay (%) 

Fraction organic carbon 
content (fg^) 

Soil pH 

Cation Exchange Capacity 
(meq/lOOg) 

Hydraulic Conductivity 
(cm/s) 

0.58 

3.5 

97.3 

2 . 2  

0.5 

0.0027 ± 0.00029 

7.9 

13.3 

8.6 X 10-3 

1 . 2  

4.7 

98.4 

1.3 

0.3 

0.0013 ± 0.00012 

8 . 0  

15.1 

4.7 X 10 - 2  
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(Nelson and Sommers, 1982). Hydraulic conductivity was determined in the 

columns by determining the flowrate through the soil, measuring the head 

loss across the soil sample and utilizing Darcy's Law. The cation 

exchange capacity was determined according to Rhoades (1982). 

Chemicals 

The herbicides investigated in this study were atrazine (Aatrex) 

and alachlor (Lasso). The chemical structures of atrazine and alachlor 

are shown in Figure 8. Atrazine is a triazine pesticide and alachlor is 

an amine pesticide. Other physical and chemical parameters for atrazine 

and alachlor which are pertinent to this study are given in Table 4. The 

atrazine and alachlor utilized for standards and stock solutions were 

analytical grade (99% pure) and were obtained from Chem Service, Inc. 

(Westchester, PA.). 

Atrazine and alachlor were analyzed according to USEPA method 619 

(USEPA, 1982) and 645 (USEPA, 1985), respectively. These two procedures 

are virtually the same and it was thus possible to analyze for both 

atrazine and alachlor simultaneously. The analytical procedure involved 

extracting the samples three times in a separatory funnel (1.0 L) with 

methylene chloride. The samples (40 to 100 mL) were brought to 500 mL 

using Nanopure II water (Barnstead, Inc.) prior to extraction. Thirty mL 

of methylene chloride was used for each of the three extractions. After 

each extraction, the methylene chloride was filtered through a drying 

column of anhydrous sodium sulfate. For the combined extract, the 

methylene chloride was exchanged to hexane and concentrated to 2 mL using 
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CH, 
rCHzCHs ' ° 

CH3 I II < ^ N-C-CH^. 
>HCHN-l^ U-NHOHs 
" ^CH2CH3 

atrazine alachlor 

COONa 

COONa 

rhodamine WT 

NaO 

COONa 

fluorescein 

Figure 8: Chemical structures of pesticides (atrazine and alachlor) 
and dyes (rhodamine WT and fluorescein) 
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Table 4. Physical and chemical properties of atrazine and alachlor 

Parameter Atrazine Alachlor 

Trade name Aatrex Lasso 

Molecular Formula^ CgHj^^ClN^ Gi^H^gClNOg 

Molecular Weight* 215.7 269.8 

Water Solubility^ @ 25 °C 33 242 
(rag/L) 

Log 2.34 2.64 

pK/ 1.7 n/a 

Vapor pressure^ @ 25 °C 8 x 10"^ 2.2 x 10"^ 
(mm Hg.) 

Henry's constant^ @ 25 °C 2.8x10"^ 1.3x10"^ 
(dimensionless) 

*Weed Science Society of America (1983). 

^Rao and Davidson (1980). 

CWeber et al. (1980). 

^Estimated according to Thomas (1982). 
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Kuderna-Danish glassware and a water bath. The 2 mL concentrates were 

placed In sealed vials and stored at -20 °G prior to gas chromatographic 

analysis (one to two weeks). Recovery efficiencies for atrazine were 

87.4% ± 4.5% and for alachlor were 84.3% ± 7.3%, respectively. Pesticide 

data were corrected for these recovery efficiencies prior to presentation 

and manipulation. Optima grade (Fisher Scientific) hexane and methylene 

chloride were utilized during this study. 

A Perkin Elmer Sigma 1 gas chromatograph (GC) was used with a 

nitrogen / phosphorous (N/P) thermionic detector in the nitrogen mode. 

The glass column utilized was 1.8 m long x 2 mm (inside diameter) and was 

packed with 5% Carbowax 20M-TPA on Supelcoport (80/100 mesh). During GC 

operation, the injection temperature was 250 °C, the oven temperature was 

200 °C, the carrier gas was helium, the carrier flowrate was 30 mL/min 

and the sample injection volume was 5.0 /iL. For these operating 

conditions, the peak detention time for alachlor was 8.4 min and for 

atrazine was 13.2 min. For a 40 mL original sample size, the detection 

limit (taken as twice the chromatogram noise level) for atrazine was 0.5 

/xg/L and for alachlor was 1.0 Mg/L-

The fluorescent dyes investigated were rhodamine WT and fluorescein. 

The chemical structures of rhodamine WT and fluorescein are shown in 

Figure 8. Smart and Laidlaw (1977) classified rhodamine WT as an orange 

fluorescent dye and fluorescein as a green fluorescent dye. Other 

available physical and chemical parameters for rhodamine WT and 

fluorescein which are pertinent to this study are given in Table 5. 

While pKa values were not found in the literature for rhodamine WT or 
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Table 5. Physical and chemical properties of rhodamine WT and 
fluorescein 

Parameter Rhodamine WT Fluorescein 

Molecular Formula ^20^10^^2^5 

Molecular Weight 531 376 

Log KQ/ -1.33 -0.39 

^Smart (1984). 
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fluorescein, both of these dyes have been shown to be ionizable at pH 

values less than 5 to 6 (Smart and Laidlaw, 1977). The rhodamine WT used 

in this study was obtained as a 20% solution from Pylam Products, Inc. 

(Garden City, NY) and the fluorescein was a powder obtained from Fisher 

Scientific (listed as Uranine by Fisher Scientific). 

Rhodamine WT and fluorescein were analyzed using a Turner 110 

fluorometer according to United States Geological Survey procedures 

(Wilson et al., 1986). The primary filters utilized for rhodamine WT 

were 1-60 + 58 and for fluorescein were 47B + 2A. The secondary filter 

utilized for rhodamine WT was 25 and for fluorescein was 58. While these 

were not the optimal filters for detecting rhodamine WT and fluorescein 

(Smart and Laidlaw, 1977), the results were sufficient for the 

concentration ranges of concern in this study. Using these filters, the 

detection limit (taken as one dial reading on the most sensitive scale) 

for rhodamine WT was 1.0 pg/L and for fluorescein was 0.2 pg/L. 

Batch Methods 

Batch studies for the herbicides and dyes were conducted by placing 

a constant mass of aquifer material and a constant volume of chemical 

solution at varying concentrations in a series of reactors and shaking 

for a predetermined amount of time sufficient for equilibrium conditions 

to exist. The initial and equilibrium concentration of the chemical(s) 

were determined for each reactor and the mass of chemical(s) adsorbed was 

calculated from mass balance considerations. Duplicates were evaluated 

for each initial chemical concentration. Chemical and soil blanks were 
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conducted during each isotherm study. The reactors utilized were 250 mL 

Erlenmeyer flasks and the shaker utilized was a horizontal motion 

Eberbach water-bath shaker. Batch tests were conducted at room 

temperature (25 °C). 

Preliminary efforts established the use of 50 grams of the aquifer 

material and 100 mL of the chemical solution for each batch reactor. 

This gave a soil to solution ratio of 1:2. Increasing the soil to 

solution ratio above 1:2 resulted in inadequate mixing of the soil with 

the solution. Preliminary work established that equilibrium conditions 

existed for the fluorescent dyes within one to two minutes and for the 

pesticides within 2 hours. Shaking times of 2 hours for the fluorescent 

dyes and 24 hours for the pesticides were utilized to assure that 

equilibrium conditions had been established. 

Upon completion of shaking, the reactors were removed from the 

shaker and the soil and solution phases were separated. For the 

fluorescent dyes, gravity filtering with Whatman #2 or #5 filter paper (8 

and 2.5 /xm, respectively) and plastic funnels was used for the solid 

liquid separation. No change in the dye concentrations was observed 

using this solid liquid separation technique. Problems were encountered 

in eliminating the background fluorescence from the soil when analyzing 

for fluorescein. Use of 0.45 /ira filter paper, 0.2 ^ra filter paper and 

high speed centrifuging (17,000 rpm) was not observed to decrease the 

background fluorescence observed, leading to the hypothesis that the 

background fluorescence was the result of colloidal or dissolved 

organics. The problem of background fluorescence for fluorescein has 



www.manaraa.com

been reported by others (Feuerstein and Selleck, 1963; Smart and Laidlaw, 

1977). Soil blanks (with no fluorescein present) resulted in readings of 

1 to 10 /ig/L. Solid liquid separation for the pesticides was achieved by 

using high speed centrifuging (17,000 rpm). This technique was chosen 

for the pesticides to eliminate any potential interferences from the 

filter paper or the plastic funnels in the extraction or GC analysis 

steps. For the batch tests, the pH of the solution phase was observed to 

be neutral (7.5 to 8.0). 

Column Methods 

The laboratory column studies were conducted using glass columns 5.0 

cm in diameter (cross sectional area of 19.6 cm^) and 35.0 cm in length. 

The glass column had an internal ledge (slight decrease in the internal 

column diameter) 2.5 cm from the bottom of the column where a fine mesh 

stainless steel screen was supported. The fine mesh stainless steel 

screen served to maintain the soil within the column. The column was 

fitted with rubber stoppers with glass tubes on the top and bottom of the 

column. When pesticides were present, the bottom rubber stopper was 

covered with aluminum foil and a small air gap (3 cm) was left below the 

top rubber stopper to prevent potential interactions between the 

pesticides and the rubber stoppers. A schematic illustration of the 

glass column is shown in Figure 9. A known mass of soil was added in 

small increments to the column with water present. This method provided 

saturated conditions in the soil while minimizing stratification of the 

soil. The depth of the soil within the column averaged approximately 
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12.0 era. Masterflex peristaltic pumps were utilized to establish a 

constant flowrate through the column. Silicone tubing was utilized in 

the pump heads and Teflon tubing elsewhere to eliminate any adsorptive 

losses of the chemicals to the tubing. A time controlled fraction 

collector was utilized to gather samples for dye or pesticide analysis. 

The breakthrough of a conservative tracer (chloride) was monitored 

utilizing an inline chloride specific electrode and a continuous data 

acquisition system interfaced with a microcomputer. Figure 9 illustrates 

schematically the column apparatus utilized during this study. The pH of 

the column effluent remained relatively neutral (7.5 to 8.0) for all 

column runs. Column studies were conducted at room temperature (25 °C). 

For purposes of determining the hydrodynamics of flow through the 

column, the breakthrough of a conservative tracer (chloride) was 

monitored. The chloride breakthrough curves verified saturated soil 

conditions and allowed the determination of the hydrodynamic dispersion 

coefficient (D^) for each combination of soil and column conditions. The 

chloride was introduced as 0.01 N CaCl2. In the absence of chloride, 

0.01 N CaSO^ was utilized to maintain the chemical environment of the 

soil column. The CaCl2 was added to the pesticide or dye solutions and 

the breakthroughs of the conservative and nonconservative chemicals were 

obtained simultaneously. Upon completion of the breakthrough portion of 

the study, a CaSO^ solution was utilized for the pesticide and dye free 

solution during the desorption portion of the column study. The CaSO^ 

solution was also eluted through the column prior to introduction of the 

dyes or pesticides to establish equilibrium conditions in the soil. 
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Distilled water was utilized for the dye studies and Nanopure II water 

(Barnstead, Inc.) was utilized during pesticide studies. 
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BATCH STUDIES 

Batch studies were conducted to evaluate the equilibrium adsorption 

of the pesticides and the dyes with the aquifer materials. While the 

environment of an equilibrium batch reactor differs from that of porous 

media flow, the relative ease of obtaining adsorption information in 

batch reactors encourages their use. The raw data for the batch studies 

appear in Appendix A. 

Pesticides 

Preliminary batch tests for atrazine and alachlor showed that 

equilibrium conditions existed within 2 hours. Shaking times of 24 hours 

were used to assure equilibrium conditions in the reactors. Preliminary 

batch studies showed no effect of background ions on the level of 

pesticide adsorption to the soils (as expected for relatively nonpolar 

organics). Due to the time and expense of pesticide analysis, it was 

decided to evaluate adsorption isotherms only for the South Ames aquifer 

material. The potential for competitive adsorption between atrazine and 

alachlor was evaluated. 

Adsorption of atrazine and alachlor 

Batch studies were conducted for atrazine and alachlor using the 

South Ames aquifer material. The resulting isotherms (based on averages 

of duplicate samples) for atrazine and alachlor are shown in Figures 10 

and 11, respectively. The isotherms are seen to be linear for atrazine 
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and alachlor over the equilibrium concentration ranges investigated. The 

Kp values for these isotherms and the corresponding values are shown 

in Table 6. The experimental values of 148 for atrazine and 400 for 

alachlor are similar to values reported in the literature. For atrazine, 

values have been reported in the range of 48 to 237 and for alachlor 

a KQJ, value of 191 ± 49 was measured (see Table 2 for a summary of 

values in the literature). 

Atrazine isotherms have been observed by others to be nonlinear at 

higher equilibrium concentrations. Rao and Davidson (1979) found 

adsorption of atrazine to be nonlinear using equilibrium concentrations 

up to the solubility limit of atrazine (33 mg/L). Peter and Weber (1985) 

investigated the adsorption of alachlor at equilibrium concentrations up 

to 16 mg/L (it is not clear what the lower limit of the equilibrium 

concentrations investigated was) and determined a value of 191 ± 49. 

The Kgg value of Peter and Weber (1985) for alachlor is less than the 

value determined in this study (400). If alachlor equilibrium 

concentrations investigated by Peter and Weber (1985) were in the mg/L 

range, one explanation for the variation in values could be that 

alachlor is nonlinear over the /ig/L to mg/L range. For the 

concentrations (fig/L) and soils investigated in this study, the atrazine 

and alachlor isotherms did not evidence nonlinearity. 

Estimated linear partition coefficient 

The ability of empirical expressions (based on values) to 

estimate the observed values for atrazine and alachlor was 
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Table 6. Batch adsorption parameters for atrazine and alachlor 

Parameter BATA BALA 

Pesticide atrazine alachlor 

Soil South Ames South Ames 

foe 0.0027 0.0027 

Kp (cm^/g) 0.40 1.08 

r2 0.96 0.97 

KQC (cm^/g) 148 400 

Table 7. Measured and 
alachlor 

estimated values for atrazine and 

Parameter atrazine alachlor 

^^oc^observed /S) 

Kow* 

^^oc^estimated /8) 

148 

2.34 

135 

400 

2.64 

270 

^^oc^estimated 153 293 

^Rao and Davidson (1980). 

^Estimated after Karickhoff et al. (1979). 

^Estimated after Brown and Flagg (1981). 
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investigated. The empirical relationships of Karickhoff et al. (1979), 

as shown in Equation 25, and Brown and Flagg (1981), as shown in Equation 

26, were utilized to estimate values for atrazine and alachlor. 

Table 7 shows the parameters predicted by these expressions and 

measured in this study. The error for the estimation expressions ranged 

from 4 to 10% for atrazine and from 35 to 50% for alachlor. The ability 

to predict the values with this accuracy based on readily available 

values is encouraging. It is also an indication that atrazine and 

alachlor are similar in nature (nonpolar, hydrophobic) to the solutes 

used to develop the empirical relationships. 

Competitive adsorption 

The potential for competitive adsorption of atrazine and alachlor 

with the South Ames aquifer material was evaluated. A batch study was 

conducted with both atrazine and alachlor present (binary solutes) during 

the shaking period. The isotherm data obtained with binary solutes were 

plotted for each pesticide with the previous isotherm data obtained with 

only a single solute present. These plots are shown in Figure 12 for 

atrazine and Figure 13 for alachlor. No significant effects of binary 

solutes on the adsorption isotherms were observed for either atrazine or 

alachlor under the conditions investigated. This indicates that no 

competitive adsorption was experienced. 
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Fluorescent Dyes 

Preliminary batch studies showed that equilibrium conditions existed 

for the fluorescent dyes within 1 to 2 minutes. Shaking times of 2 hours 

were utilized to assure equilibrium conditions in the reactors. 

Adsorption of rhodamine WT and fluorescein 

Batch studies were conducted for rhodamine WT (RWT) and fluorescein 

using the South Ames aquifer material. The resulting isotherms for RWT 

and fluorescein are shown in Figure 14 and Figure 15 respectively. 

Figure 16 provides increased resolution at the lower concentrations for 

the RWT isotherm. Table 8 summarizes the experimental conditions and 

adsorption results for the RWT (BRA) and fluorescein (BFA) batch tests. 

As observed by the relative magnitudes of the q values for RWT and 

fluorescein adsorption isotherms (Figures 14 and 15), the level of 

adsorption for the fluorescein was much less than that for the RWT. 

During the fluorescein batch studies, the reductions of the aqueous phase 

fluorescein concentration were low (5 to 15%). As discussed previously, 

the soil blanks exhibited background fluorescence when analyzing for 

fluorescein which varied from blank to blank. These factors complicated 

the interpretation of the fluorescein batch results. Attempts to 

increase the level of fluorescein adsorption by increasing the soil to 

water ratio resulted in increases in the background fluorescence and 

unsatisfactory mixing of the soil with the solution. 

Inspection of the adsorption isotherms for RWT and fluorescein 

indicates that both dyes demonstrated linearity at low concentrations 
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Table 8. Batch adsorption parameters for rhodamine WT and fluorescein 

Parameter BRA BFA BRH BRACA 

Dye 

Soil 

^oc 

Background solution 

Kp (cm^/g) 

(K^c^batch /S) 

N 

Kfr (g/g)/(g/L)N 

RWT 

South Ames 

0.0027 

distilled 

4.5 

0.99 

1.7 X 10% 

0 . 8 0  

8.8 X 10-4 

Fluorescein 

South Ames 

0.0027 

distilled 

0.33 

0.98 

1.2 X 10% 

RWT 

Hallets 

0.0013 

distilled 

2.7 

0.99 

1.4 X 10^ 

0.85 

7.6 X 10 '^  

RWT 

South Ames 

0.0027 

10-2 Q CaClg 

9.7 

0.99 

3.7 X 103 

0.73 

7.1 X 10 -4 
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with nonlinearity experienced at higher concentrations. The linear 

adsorption expression was used to describe the linear data at the lower 

concentrations. The values (Table 8) of 1700 for RWT and 120 for 

fluorescein are similar to values reported by others (see Table 2). 

Using the data of Trudgill (1987), values for RWT in the range of 

1000 to 1600 were determined. Using the data of Omoti and Wild (1979), a 

Kgg value for fluorescein of 108 was determined. 

The Freundlich isotherm was able to predict the nonlinear nature of 

the RWT isotherm observed at higher equilibrium concentrations. However, 

the discontinuous nature of the fluorescein isotherm (caused by the 

highest equilibrium concentration data points) prevented the Freundlich 

expression from providing a good fit to the data. For this reason, only 

the linear expression is shown for the fluorescein isotherm. The 

adsorption parameters for the Freundlich (Kg^ and N) expression are shown 

in Table 8 for the RWT (BRA) isotherm. The Freundlich parameters were 

determined utilizing a nonlinear least error method in the Eureka 

(Borland) microcomputer software package. This method was observed to 

provide a better fit to the isotherm data than the conventional log 

transformation method. The failure of the log transformation method to 

provide as good of results as the nonlinear least error method could be 

due to the spacing of the data points utilized in the batch tests. 

Estimated linear adsorption parameter 

The estimation expressions of Karickhoff et al. (1979) (Equation 25) 

and Brown and Flagg (1981) (Equation 26) were utilized to predict 
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values for RWT and fluorescein. Table 9 shows the parameters 

predicted by these expressions and measured in this study. It is 

observed that the levels of adsorption observed for both dyes in this 

study were several orders of magnitude greater than that predicted by 

either estimation technique. The estimation techniques of Karickhoff et 

al, (1979) and Brown and Flagg (1981) are empirical and were derived 

utilizing relatively nonpolar chemicals. RWT and fluorescein are polar 

and ionizable and thus violate the conditions necessary for these 

empirical relationships to be valid. 

Effect of aquifer material 

The effect of the aquifer material on the RWT adsorption isotherm 

was investigated by utilizing the Hallets alluvial material. The Hallets 

material was coarser and lower in organic carbon content. The RWT 

adsorption isotherm is shown in Figure 17 and the resulting linear and 

Freundlich parameters are shown in Table 8 (BRH). The f^^ value for the 

Hallets material was 48% of that for the South Ames material and the 

value for the Hallets material was 60% of that for the South Ames 

material. This indicates that the level of adsorption decreased with the 

decreasing value of f^^. It is noted that the Freundlich parameters were 

similar for the Hallets and Ames materials (Table 8). 

Effect of background ions 

The batch studies discussed above were conducted with the dyes in 

distilled water (no background ions added). Based on the polar nature of 
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Table 9. Measured and predicted values for rhodamine WT and 
fluorescein 

Parameter RWT Fluorescein 

-1.33 -0.39 

(K^c^estimated /s) 0.03 0.25 

^^oc^estimated /§) 0.06 0.43 

^^oc^observed /s) 1400 - 3700 120 

^Estimated after Karickhoff et al. (1979). 

^Estimated after Brown and Flagg (1981). 
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RWT, the effects of background ions present along with the RWT were 

evaluated. The main variations of the background ions investigated were 

monovalent versus divalent cation, specific cation, specific anion and 

ion concentration. Preliminary batch tests were conducted (without 

replication) to evaluate which of the above variations were the most 

significant. A constant soil to mass ratio and RWT concentration was 

placed in each reactor. The ionic compound and the concentration of each 

compound was varied between the reactors. The resulting equilibrium 

phase RWT concentrations were compared to evaluate the effects of the 

experimental variations. The compounds and their concentrations utilized 

in this batch test are summarized in Table 10. Reactors with RWT and 

with the background ions but with no soil showed no decrease in RWT 

concentration. Figure 18 shows the measured equilibrium values for each 

reactor. This preliminary study indicated the following; (1) for 

constant concentration, the specific cations present (e.g., CaCl2 versus 

NaCl) had a greater impact than the specific anions (e.g., CaCl2 versus 

CaSO^), (2) an order of magnitude difference in concentration of the 

divalent cation calcium (e.g., CaCl2) was observed to decrease the 

equilibrium RWT concentration (increase the level of adsorption) while 

little effect on the equilibrium RWT concentration was noted for an order 

of magnitude difference in concentration for the monovalent cation sodium 

(as NaCl). 

Based on these preliminary results, several of the above conditions 

were repeated with replicates. Figure 19 shows the mean and standard 

deviation for each of the experimental conditions evaluated (as defined 
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Table 10. Effect of background Ions on rhodamine WT adsorption 

Item Chemical Concentration Cation Concentration 
(M) (mg/L) 

KB KBr 10-3 K 39 

KC KGl 10-3 K 39 

NCL NaCl 10-3 Na 23 

NCH NaCl 10-2 Na 230 

NBC NaHCOj 10-3 Na 23 

MGL MgSO^'THgO 10-3 Mg 24 

MGH MgSO^•THgO 10-2 Mg 240 

CCL CâCl2 10-3 Ga 40 

GGH G3.GI2 10-2 Ca 400 

CS CâSO^ 10-3 Ga 100 

BLK Blank 
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in Table 10). These results indicate the following: (1) with 

concentration constant, increased adsorption was realized for divalent 

versus monovalent cations (e.g., calcium versus sodium), (2) with 

concentration and valency constant, certain cations were observed to 

increase the adsorption realized (e.g., calcium versus magnesium) and (3) 

with cation constant, increasing concentration resulted in increases in 

the level of adsorption. It is hypothesized that these effects are the 

result of the suppression of diffuse double layers present in the 

alluvial material. For the polar RWT, suppression of the diffuse double 

layer would allow easier access of the RWT to the adsorption sites. This 

would explain the increase in RWT adsorption to the soil (as evidenced by 

the decrease in RWT equilibrium aqueous phase concentration) with 

increased suppression of the diffuse double layer (with increasing 

valency and concentration). The polar nature of RWT adsorption 

(evidenced by these results) helps to explain the deviation of the level 

of RWT adsorption from that estimated based on empirical relationships 

which were developed using nonpolar solutes. 

An isotherm was determined for RWT with background ions added (10"^ 

N CaCl2) and using the South Ames alluvial material (BRAGA in Table 8). 

Figure 20 shows the resulting isotherm with the linear and Freundlich 

parameters summarized in Table 8. This isotherm (BRACA) differs from a 

previous isotherm (BRA) by the addition of the CaCl2. The Kp value for 

BRACA (9.7) was greater by a factor of more than two than that with no 

background ions added. Figure 21 shows the two isotherms (BRA and BRACA) 

plotted jointly. For a given equilibrium concentration it is observed 
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that the level of adsorption (q) is greater with the addition of CaCl2. 

The isotherm is observed to vary from linearity at a lower equilibrium 

concentration with CaCl2 than with no background ions added. Using the 

point of deviation of the linear and the Freundlich plots as the point 

where nonlinear adsorption becomes evident, the deviation from linearity 

occurs at 230 pg/L without CaCl2 (Figure 16) versus 80 /xg/L with CaCl2 

(Figure 20). However, the mass of RWT adsorbed at 80 pg/L with CaCl2 and 

230 Mg/L without CaCl2 is similar (0.75 x 10"^ versus 1.0 x 10"®, 

respectively). This suggests that, while the background ions reduce the 

driving force (concentration gradient) necessary to achieve a certain 

level of adsorption, the adsorption limitations which cause nonlinear 

adsorption are not affected as significantly by the background ions. 

This would agree with the hypothesis that the background ions serve to 

suppress the diffuse double layer. 
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COLUMN STUDIES 

While adsorption information is relatively easy to obtain with batch 

studies, the environment of continuous flow column studies more closely 

resembles that of porous media flow. For this reason, column 

breakthrough (adsorption) and elution (desorption) curves for the 

pesticides and the fluorescent dyes were measured. The raw data for the 

column studies appear in Appendix B. 

The breakthrough of a conservative tracer (chloride) was evaluated 

in each column run. The chloride breakthrough curve was complete within 

two pore volumes for all runs and this information was utilized to obtain 

the hydrodynamic dispersion coefficient (D^) for each column run. The 

chloride breakthrough curves indicated that saturated conditions existed 

during the column runs, that the flow through the porous media occurred 

without significant preferential flow and that the number (relative 

magnitude of advective and dispersive transport) was relatively 

independent of pore water velocity (Table 11). 

Pesticides 

Breakthrough and elution curves were collected for atrazine and 

alachlor. Due to the time and expense involved in analyzing pesticides, 

only the South Ames alluvial aquifer material was investigated during 

column runs. Preliminary batch tests for atrazine and alachlor indicated 

no significant effect of background ions on the level of adsorption 

realized. The adsorption of atrazine and alachlor was observed to be 
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Table 11. Column parameters for atrazine and alachlor column runs 

CO (/ig/L) PWV Length Weight Porosity Switch to 
Desorption 

Run Atrazine Alachlor (cm/h) (cm) (g) (cm /h) (V/VO) 

CPAIO 200 200 10. .6 11, .8 380, .0 0, ,38 9, ,7 12, ,9 11, .8 

CPA5 200 200 5. .5 11, .8 384, .3 0, .37 5, .0 13, .0 18, .3 

CPA30 200 200 30, ,3 12, .4 387, .4 0, .40 33 .3 11, .3 19, .5 
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linear during the batch tests for the concentration ranges investigated 

and competitive adsorption was not evidenced. Thus, the pesticide column 

runs were conducted with atrazine and alachlor present jointly and the 

major variables investigated were the effect of pesticide and pore water 

velocity (detention time) on the breakthrough curves. 

Breakthrough curves for atrazine and alachlor 

Breakthrough and elution curves for atrazine and alachlor were 

analyzed in a single column run using the South Ames material and a pore 

water velocity of 10.6 cm/h. The conditions for the column run are 

summarized in Table 11 (CPAIO) for atrazine and alachlor and the 

breakthrough curves are shown in Figure 22. The alachlor was observed to 

be more highly adsorbed (retarded) than the atrazine, as observed during 

the batch tests. The alachlor did not reach a value of C/CO of 1.0 

during the column breakthrough but instead appeared to level off at a 

value of C/CO of 0.85. The adsorption of atrazine and alachlor was 

observed to be reversible (desorption occurred) during the elution 

studies, indicating physical adsorption. Mass balances showed 105% 

recovery for the atrazine and 68% recovery for the alachlor. The lower 

recovery of the alachlor suggests that some other mechanism (e.g., 

degradation, volatilization) may have been responsible for alachlor loss 

during the column breakthrough. The chromatograms showed no evidence of 

new peaks during the column run (the presence of new peaks would have 

suggested the appearance of metabolites) and no evidence of 

volatilization was observed for the stock solution during the column run. 
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www.manaraa.com

117 

Subsequent column runs were conducted for additional pore volumes to 

determine if the alachlor would reach complete breakthrough. 

Several techniques may be used to compare the results observed in 

column studies with those obtained in batch studies. For a sigmoidal 

breakthrough curve, the retardation factor (rg) may be established by 

determining the relative pore volume corresponding to C/CO equal to 0.5. 

The value of Kp may then be determined from r^ according to Equation 13. 

For nonsigraoidal breakthrough curves (as evidenced for RWT in this study 

and nonequilibrium breakthrough curves in general), this method of 

determining the Kp value is not adequate (Bouchard et al., 1988). As an 

alternative for determining Kp values, the following method was utilized. 

As the breakthrough curve reaches completion (C/CO of 1.0), it is 

possible from mass balance considerations to calculate the mass of 

chemical adsorbed to the soil. Combining the mass of the chemical 

adsorbed with the mass of the soil in the column results in a value for q 

(g chemical adsorbed / g soil). At complete breakthrough, the liquid 

phase concentration throughout the column is the same (CO). This is the 

equilibrium chemical concentration (Ce) throughout the column which 

determines the level of adsorption (q) determined above. The q and C^ 

values correspond to a single point isotherm and a Kp value can be 

determined. Values for Kp determined from the column run by this method 

and those determined from the batch studies are compared in Table 12. 

From Table 12, the Kp values determined from the column run are seen 

to be less than those determined in the batch tests for both the atrazine 

and the alachlor. Bouchard et al. (1988) reported data that gave ratios 
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Table 12. Column adsorption parameters from column run CPAIO for 
atrazine and alachlor 

Parameter atrazine alachlor 

Mass Soil (g) 380.0 380.0 

Mass pesticide adsorbed (g) 2.2 X 10-5 7.1 X 10-5 

Ce (Mg/L) 200 200 

column /s) 0.30 0.93 

^-^oc^column /s) 111 344 

(Kp)batch (cmVs) 0.40 1.08 

(^f)batch 2.7 5.7 

(^f)column 1.9 4.3 

(^f)column 2.3 5.0 

(^f)column /(^f)column 1.2 1.2 

^Determined from C/CO = 0.5. 

^Determined from (Kp)coiumn' 
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of column to batch values in the range of 0.43 to 0.74. The ratios of 

column to batch values for atrazine and alachlor from Table 12 are 

0.75 and 0.87, respectively. If the leveling of the breakthrough curve 

at a value of C/CO of 0.85 for the alachlor breakthrough was due to some 

mechanism other than adsorption, then the Kp value determined from the 

column run was artificially high (the mass actually adsorbed was less 

than calculated based on mass balance considerations). This would 

account for the higher ratio of column to batch values for alachlor, 

and may explain why this ratio was outside the range of Bouchard et al. 

(1988). 

Researchers have suggested that the relative degree of 

nonequilibrium for a breakthrough curve may be determined by taking the 

ratio of values for rg determined at C/CO =0.5 and r^ determined using 

the Kp value determined from the column run (Bouchard et al., 1988). For 

a sigmoidal breakthrough curve (and linear adsorption conditions), the 

ratio of r^ values determined by each method will be unity. As the ratio 

deviates from unity, increased nonequilibrium conditions are indicated 

(fronting and/or tailing of the breakthrough curve). The ratios for 

atrazine and alachlor (as seen in Table 12) are both 1.2 and indicate 

nonequilibrium conditions (as observed by visual inspection of the 

breakthrough curves). Bouchard et al. (1988) reported ratios in the 

range of 0.96 to 1.64 with the higher ratios being for higher organic 

carbon content soils. 

The relative pore volume when desorption was initiated is shown in 

Table 11. The elution curves for atrazine and alachlor did not return to 
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C/CO = 0.0 in the same number of pore volumes that it took to reach 

equilibrium breakthrough (C/CO = 1.0 for atrazine and 0.85 for alachlor). 

Thus, hysteresis of desorption was observed for atrazine and alachlor. 

Effect of pore water velocitv 

To evaluate the kinetics of adsorption in the soil column, 

additional column studies for atrazine and alachlor were conducted with 

lower and higher pore water velocities. The lower pore water velocity 

investigated was 5.5 cm/h (CPA5 in Table 11) and the higher pore water 

velocity was 30.3 cm/h (CPA30 in Table 11). The column results for all 

three pore water velocities for atrazine are shown in Figure 23 and for 

alachlor are shown in Figure 24. The breakthrough curves were conducted 

for additional pore volumes for the latter column runs to determine if 

the alachlor would reach complete breakthrough (C/CO = 1.0). Thus, the 

initiation of desorption occurred at different values of V/VO for all of 

the column runs (as shown in Table 11). For ease of comparison, the 

elution curves were normalized such that a value for V/VO =0.0 indicates 

the point when desorption was begun for each individual column run. 

These normalized elution curves are shown for atrazine in Figure 25 and 

alachlor in Figure 26. 

It is observed from Figure 23 that decreasing the pore water 

velocity from 10.6 to 5.5 cm/h did not affect the appearance of the 

atrazine breakthrough curve while increasing the pore water velocity from 

10.6 to 30.3 cm/h caused the atrazine breakthrough curve to appear within 

fewer pore volumes. The atrazine r^ values (from C/CO =0.5) for pore 
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water velocities of 5.5, 10.6 and 30.3 cm/h were 1.9, 1.9 and 1.4, 

respectively. The chloride breakthrough curves were observed to be 

relatively independent of pore water velocity (Pe was relatively 

constant, see Table 11), indicating that the column hydrodynamics were 

not responsible for the differences in the pesticide breakthrough curves. 

Some scatter was observed in the pesticide concentrations, as was 

expected due to the low concentration of pesticides investigated (200 

Hg/h) and the small sample sizes available for extraction. Figure 25 

shows the elution curves appearing after fewer pore volumes with 

increasing pore water velocity. 

For alachlor, the increasing pore water velocity was also observed 

to cause breakthrough at fewer pore volumes, as observed in Figure 24. 

The alachlor r^ values (from C/CO =• 0.5) for pore water velocities of 

5.5, 10.6 and 30.3 cm/h were 4.2, 4.1 and 2.8, respectively. It is 

observed from Figure 26 that the elution curves appeared after fewer pore 

volumes with increasing pore water velocities. 

Increasing the pore water velocity (decreasing the column detention 

time) appeared to result in a higher value of C/CO for alachlor (Figure 

24). This may suggest that the nonadsorption mechanism responsible for 

alachlor loss was dependent on the detention time in the column. The 

percent recoveries of alachlor for pore water velocities of 5.5, 10.6 and 

30.3 cm/h were 60, 68 and 72%, respectively. Baker and Johnson (1979), 

utilizing agricultural field plots, determined half lives for 

alachlor in the range of 8 to 17 days. It may be possible that 

degradation was the cause for the loss of alachlor experienced in this 
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study, although GC chromatograms showed no evidence of new peaks which 

would be expected for metabolites, 

Fluorescent Dyes 

Breakthrough and elution curves were collected for RWT and 

fluorescein. Experimental variations considered were the result of 

observations made from the batch results. 

Breakthrough curves for rhodamine WT and fluorescein 

Breakthrough and elution curves for RWT and fluorescein were 

compared using the South Ames alluvial aquifer material. The conditions 

for the column studies are summarized in Table 13 (CRA for RWT and CFA 

for fluorescein). Figure 27 shows the breakthrough and elution curves 

for RWT and Figure 28 for fluorescein. Based on results of the batch 

studies, the concentrations of the fluorescent dyes utilized were in the 

linear adsorption range. Mass balances of breakthrough and elution 

curves for the fluorescent dyes indicated virtually complete recovery of 

the dyes (85 to 110%) for all column runs. This indicates that the 

adsorption of the fluorescent dyes is reversible (physical adsorption) 

and that degradation of the fluorescent dyes was not evident in the 

columns. 

The breakthrough curve for RWT (Figure 27) is not the conventional 

sigmoidal form but instead has a plateau at a value of C/CO of 0.5. This 

plateau was evidenced for approximately 20 pore volumes prior to C/ÇO 

values increasing again. The second leg of the breakthrough curve was of 
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Table 13. Column parameters for rhodamine WT and fluorescein column runs 

Run Dye CO PWV Soil Length Weight Porosity Conservative D^, 
Type® Tracer 

(/ig/L) (cm/h) (cm) (g) (cm^/h) 

CRA RWT 201 11. 7 SA 13 .0 388. 0 C. 
C

M
 

NaCl 7. ,6 

CFA Fluorescein 225 13. .2 SA 9 .0 300, ,0 0. .36 CaCl2 5, ,9 

CRACA RWT 195 11. .3 SA 12 .0 360. ,0 0. ,42 CaCl2 7, .9 

CRH RWT 200 30. .0 H 13 .0 127, .9^ 0, ,30 CaCl^ 19 .0 

CRAHP RWT 198 34. .1 SA 11 .0 352, .0 0, ,38 NaCl 15 .0 

CRAHC RWT 1950 11. .9 SA 11 .5 352, .0 0, ,40 NaCl 6 .8 

^Soil type; SA = South Ames, H = Hallets. 

^Smaller diameter column (2.5 cm). 
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a shallower slope than the first leg. This two leg breakthrough curve 

has also been observed by Everts (1988) for RWT and a surface soil. The 

elution curve did not demonstrate a plateau but did demonstrate 

hysteresis of desorption (the elution curve had not reached a value of 

C/CO of 0.0 in the same number of pore volumes required for the 

breakthrough curve to reach a C/CO value of 1.0). 

The breakthrough curve for fluorescein (Figure 28) occurred in much 

fewer pore volumes than for RWT and did not demonstrate the plateau 

observed for the RWT. Hysteresis of desorption was evidenced for the 

fluorescein elution curve. A comparison of the column results for 

fluorescein and RWT is shown in Figure 29. 

Values for determined by mass balance from the column runs are 

shown in Table 14 for RWT (CRA) and fluorescein (CFA). The value 

determined for RWT from the column run (CRA) is seen to be greater than 

that measured in the batch test with the ratio of column to batch Kp 

being 1.5. Typically, values determined in columns are seen to be 

less than those determined in batch tests due to the kinetic limitations 

(physical or chemical) of adsorption during porous media flow. Bouchard 

et al. (1988) reported data that gave ratios of column to batch Kp values 

in the range of 0.43 to 0.74. Either the nature of the batch system 

decreased the level of adsorption for RWT or the nature of the column 

system increased the level of adsorption for RWT. With the data 

collected in this research, it was not possible to determine the 

mechanism(s) responsible for this phenomena. The investigation of the 

mechanism(s) responsible for this phenomena should be the focus of future 
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Table 14. Column adsorption results for rhodaraine WT and fluorescein column runs 

Run Dye Soil Conservative Mass Mass Dye (̂ p) column (̂ p̂ batch 
Type Tracer Soil Adsorbed 

(g) (xlO"4 g) (Mg/L) (cm̂ /g) (cm̂ /g) 

CRA RWT SA NaCl 388.0 5.2 201 6.9 4.5 

CFA Fluorescein SA CaClg 300.0 0.03 225 0.05 0.33 

CRACA RWT SA CaClg 360.0 11.0 195 15.7 9.7 

CRH RWT H CaClg 127.9̂  1.7 200 6.6 

CRAHP RWT SA NaCl 352.0 3.0 198 4.3 4.5 

CRAHC RWT SA NaCl 352.0 17.0 1950 2.5 4.5 

Ŝoil type; SA = South Ames, H = Hallets. 

Ŝmaller diameter column (2.5 cm). 
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research. 

The Kp value determined for the fluorescein column run (Table 14, 

CFA) is observed to be less than that observed during the batch test with 

the ratio of column to batch Kp values being 0.15. This ratio is smaller 

than typically observed (0.43 to 0.74 after Bouchard et al., 1988). The 

fluorescein breakthrough curve was not significantly retarded from the 

chloride breakthrough curve (C/CO - 1.0 in 3 pore volumes for fluorescein 

versus 2 pore volumes for chloride). However, for higher organic carbon 

content surface soils, the fluorescein would be more significantly 

retarded from the conservative tracer (Omoti and Wild, 1979). 

Effect of background ions 

The batch studies showed the level of RWT adsorption to be a 

function of the background ions. The RWT breakthrough curve above 

(Figure 27 and CRA in Tables 13 and 14) was conducted with sodium 

chloride as the conservative tracer. The presence of sodium chloride was 

not observed to significantly affect the level of RWT adsorption during 

batch tests while the presence of calcium chloride was observed to 

increase the level of RWT adsorption. For this reason, a column run was 

conducted with 10"̂  N CaCl2 as the conservative tracer in the RWT 

solution. This breakthrough curve is shown in Figure 30 (CRACA in Tables 

13 and 14). Figure 31 shows jointly the RWT column data with CaCl2 and 

with NaCl. The increase in Kp values when CaCl2 was present (Table 14) 

indicates that the adsorption capacity of the soil for RWT was increased 

in the presence of CaCl2 (as observed during the batch studies). From 
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Table 14, it is observed that the ratio of column to batch Kp values 

(with CaCl2 as background) was 1.6 while it was 1.5 for RWT without 

CaClg. 

Effect of aquifer material 

The breakthrough of RWT with the Hallets alluvial material was 

investigated to evaluate the occurrence and nature of the two leg 

breakthrough curve (observed for the South Ames material) with a second 

alluvial aquifer material. Figure 32 shows the breakthrough curve for 

RWT with the Hallets alluvial material (CRH in Tables 13 and 14). The 

conservative tracer used during this column run was CaCl2. The 

breakthrough curve is observed to plateau at a value of C/CO of 0.5 and 

maintain this plateau for approximately ten pore volumes. From the 

column Kp values (CRACA, Table 14), it is observed that the South Ames 

material had a higher capacity for adsorbing the RWT than the Hallets 

material. This is consistent with the batch results and the lower 

organic carbon content of the Hallets material and may explain why the 

plateau was evidenced for less pore volumes (10) in this column run than 

in the column run using the South Ames material (20 pore volumes). Thus, 

the two leg breakthrough curve has been observed for two aquifer 

materials in this study and a surface soil by Everts (1988). 

Effects of size fractions and organic content 

In an effort to better understand the nature of the RWT adsorption 

and two leg column breakthrough curve, various steps were taken to reduce 
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the organic content and/or percent fines (clays) in the soil columns. 

The soil treatments utilized included wet sieving, backwashing and 

heating at 550 or 850 °C. 

Figure 33 shows four column runs which utilized samples of the South 

Ames alluvial aquifer material subjected to four different treatments 

with Figure 34 providing increased resolution of the data at the lower 

pore volumes. Table 15 shows the treatments utilized in each of the four 

column runs and the adsorption realized. Calcium chloride was utilized 

as the conservative tracer in all of these column runs. The plot labeled 

CRACA corresponds to an unaltered sample, as shown previously in Figure 

30. The plot labeled BW corresponds to a sample which was retained 

during wet sieving on a number 200 sieve (75 fiia) and then backwashed in a 

column overnight to assure the removal of the clays. It should be noted 

that in this process the f̂  ̂of the soil was decreased from 0.0027 to 

0.0010. The plot labelled HT/850 corresponds to a soil sample heated at 

850 °C. This temperature will not only affect the organic carbon content 

but will also affect some of the clays. Analysis of the clay fraction by 

x-ray diffraction indicated the presence of kaolinite, illite and sodium 

and calcium montmorillonite with kaolinite and illite the most likely to 

be affected at the temperature considered here (Deer et al., 1966). The 

plot labelled BW-HT/850 corresponds to the backwashed sample from above 

being heated at 850 °C. This corresponds to the alluvial material minus 

the fines and the organic content. 

The shift from the whole soil curve (CRACA) to the backwashed curve 

may be attributed to the loss of the clays and/or the loss of the organic 
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Table 15. Column adsorption results for rhodamine WT and treated 
materials 

Curve Soil Treatment Mass 
Soil 

Mass Dye 
Adsorbed 

\-4 

(̂ ^̂ column 

(g) (x 10"̂  g) (Atg/L) (cmM/g) 

Figure 33 and 34 

CRACA whole soil 360, ,0 11. 0 195 15. 7 

BW backwashed 301, ,4 3. 7 195 6. 3 

HT/850 heated @ 850 °C 356, .9 1, 0 196 1. 4 

BW-HT/850 backwashed and 283, ,6 0, ,10 196 0. 25 
heated @ 850 °C 

Fleure 35 

BW-HT/550 backwashed and 298 .6 1 .2 195 2, .1 
heated @ 550 °C 

HT/850 heated @ 850 °C 356 .9 1 .0 196 1 .4 

BW-HT/850 backwashed and 283 .6 0 .10 196 0 .25 

GLBDS 

heated @ 850 °C 

glass beads 325.0 0 . 0 2  194 0.03 
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content. The adsorption of RWT has been shown in batch and column 

studies discussed above to be a function of the organic carbon content. 

The ratio of f̂  ̂values for the whole soil and the backwashed soil is 2.7 

and from Table 15 it is observed that the ratio of Kp values is 2.5. It 

could be hypothesized that the decrease in the adsorption observed was 

caused largely by the loss of the organic carbon content. Comparison of 

the breakthrough curves for alluvial materials heated at 850 °C with and 

without backwashing (BW-HT/850 and HT/850, respectively) indicates that 

the clays provide adsorption sites for the RWT even upon heating at 850 

°C. While no distinct plateau is observed for the heat treated alluvial 

materials, the change in slope observed for the HT/850 plot could 

represent the same phenomena. 

Figure 35 shows the results of three column runs which used treated 

alluvial materials and one column run which used glass beads. Two of the 

column runs (treated materials) were shown in Figure 34 (BW-HT/850 and 

HT/850) and correspond to materials heated at 850 °C with and without 

backwashing, respectively. Figure 35 also includes column results from a 

South Ames sample backwashed and heated at 550 °C (BW-HT/550) and from a 

column packed with 18/20 mesh glass beads (GLBDS). The treatments and 

adsorption results for the plots shown in Figure 35 are summarized in 

Table 15. Inspection of values indicates that the backwashed material 

heated at 550 °C experienced more RWT adsorption than the backwashed 

material heated at 850 (BW-HT/850). This suggests that further 

decomposition of recalcitrant organics or further collapse of clays 

occurred between 550 and 850 °C, causing the observed decrease in the 
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level of adsorption. The column run utilizing glass beads resulted in 

negligible adsorption and the breakthrough curve was very close to that 

for the conservative chloride (as indicated by observing the value in 

Table 15 and noting that a conservative chemical has a Kp value of 0.0). 

In an effort to determine if the organic content was preferentially 

distributed among sand size fractions, a portion of the South Ames 

material was wet sieved through a number fifty sieve (300 fim). The 

material retained on this sieve was used to pack a column and a RWT 

breakthrough curve was run. Figure 36 compares this run, WS (> 300 pm), 

with a run previously shown (BW in Figures 33 and 34 and Table 15 above) 

in which the material was wet sieved through a number 200 sieve (75 /xm) 

and subsequently backwashed (BW (>75 jum) in Figure 36). It is observed 

that the two curves are virtually the same. Comparing the organic 

contents for the two materials reveals that the coarser media (> 300 um) 

had a slightly higher f̂  ̂(0,0013 ± 0.00017) than the finer media (> 75 

um, 0.0010 ± 0.00017). Theoretically, it would seem that the finer 

material, having a greater surface area, would have the higher organic 

content. The differences observed could be the result of a slight 

variation in the treatments used to obtain the two médias. Backwashing 

was used to help assure that the clays were removed from the > 75 /xm 

sample while backwashing was not used for the > 300 /xm media. It could 

be that this overnight backwashing removed a portion of the organic 

content from the media remaining in the column, thus explaining the lower 

organic content for the finer material. The significant thing to note is 

that the coarser media still had a relatively significant organic 



www.manaraa.com

o 
u 
CJ 

1 . 0  

0.9 

0 . 8  

0.7 

0 . 6  

0.5 

0.4 

0.3 

0 . 2  

0 . 1  

0 . 0  

+ D 

+ + + + + 

+ 
+ 

+ n 

+ • 

+ +-

+ + + 

+ 
+ 

—r-
20 

—r-
40 

V/VO 

RWT / South Ames 

Calcium Chloride 

+ BW (>75 urn) 

• WS (>300 urn) 

60 80 

4> 
Ul 

Figure 36: Rhodamine WT breakthrough as function of sand size fractions 



www.manaraa.com

146 

content. It thus appears that the organic content is distributed 

throughout the soil size fractions and are attached to the particles 

strongly enough to resist their loss during wet sieving and backwashing. 

Observations of several sand sizes using scanning electron microscopy 

(SEM) showed micron and submicron sized particles attached to the surface 

of the sand grains at each sand size range. This may support the 

hypothesis of distribution of organic content throughout the sand size 

ranges, although it was not possible to identify the micron and submicron 

particles as organic content in the SEM analysis. 

Effect of pore water velocity / concentration 

To evaluate the kinetics of adsorption in the soil column, a column 

run was conducted with a pore water velocity of 34.1 cm/h (CRAHP in 

Tables 13 and 14). These results are compared with a similar column run 

conducted at a pore water velocity of 11.7 cm/h (CRA in Tables 13 and 14) 

with other parameters being the same. These runs were both conducted 

with sodium chloride as the conservative tracer. The column results for 

these two runs are shown jointly in Figure 37 with Figure 38 providing 

increased resolution at the lower pore volumes. It is seen that the two 

curves (with pore water velocity as the variable) are virtually the same 

for the first leg of the breakthrough and that the plateau occurs at 

about 0.5 for both cases and at about the same relative pore volume. 

However, in the case of the higher pore water velocity the second leg of 

the breakthrough occurs sooner and has a steeper slope. It thus appears 

that the first adsorption mechanism (first leg) is not significantly 
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affected by the reduced reaction time (is not kinetically limited) while 

the second adsorption mechanism (second leg) is kinetically limited. 

This may support the hypothesis that the first leg of the breakthrough 

curve corresponds to the development of a monolayer of adsorption and the 

second leg of the breakthrough curve corresponds to the development of 

multilayers of adsorption. 

To evaluate the impacts of the nonlinear adsorption of RWT (as 

observed in the batch studies) on the column data, a column run was 

conducted with an order of magnitude higher RWT concentration (1950 pg/1 

versus 201 /xg/l) using the same soil and porewater velocity (CRAHC and 

CRA, respectively, in Tables 13 and 14). This comparison is also 

illustrated in Figures 37 and 38. It is observed that the higher 

concentration resulted in breakthrough at fewer pore volumes. While the 

amount of adsorption had increased with the higher concentration (q is 

larger), the ratio of the increase in adsorption to the increase of the 

concentration is less than one (which is indicated by the deviation from 

linearity in the isotherm test at values for RWT greater than 

approximately 250 fxg/l). The nonlinear (N < 1.0) adsorption results in 

the adsorption occurring with fewer pore volumes passed for the higher 

concentration, as observed in this run. These results point out the 

danger of conducting isotherm tests at lower concentrations (which will 

typically result in a linear isotherm) and extrapolating the data to 

higher concentrations (where linearity may be violated). The time of 

first appearance for the RWT and the time till complete breakthrough will 

be overestimated if the nonlinear adsorption (N < 1.0) is not considered. 
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MODELING RESULTS 

The abilities of two existing solute transport with adsorption 

models to describe and predict the breakthrough curves observed for 

atrazine and alachlor were evaluated. A simple equilibrium adsorption 

model and a more sophisticated physical nonequilibrium model were 

utilized. Data from pesticide column runs at two pore water velocities 

were utilized to determine the ability of the models to predict 

breakthrough data with variations in experimental conditions. 

Equilibrium Adsorption Modeling 

The equilibrium adsorption models are the easiest to solve with 

analytical solutions being available for certain boundary conditions. 

For purposes of this study, the analytical solution outlined in Equations 

15 through 18 was utilized. Nonequilibrium breakthrough curves have been 

observed to contain more spreading (dispersion) than predicted by 

equilibrium models. Some researchers have suggested incorporating this 

additional spreading into a fitted dispersion coefficient (or number) 

which would account for both hydrodynamic and nonequilibrium dispersion 

(Parker and Valocchi, 1986; Hutzler et al., 1986; Lee et al., 1988). The 

use of fitted values for D̂  will be evaluated. 

The parameters determined during the column studies for atrazine and 

alachlor (Tables 11 and 12) were utilized as input to the equilibrium 

adsorption model. The (Kp)column values for atrazine and alachlor were 

utilized to allow better comparison of the shapes of breakthrough curves 
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predicted and observed. Had the (Kp)batch values (which were greater 

than the (Kp)column values - see Table 12) been utilized for atrazine and 

alachlor, the predicted breakthrough curves would have been shifted to 

the right (more adsorption was experienced during batch studies than 

during column studies). Data for column runs at pore water velocities of 

10.6 and 30.3 cm/h were utilized for this analysis. 

Atrazine 

The atrazine data and equilibrium adsorption curves are shown in 

Figures 39 and 40 for pore water velocities of 10.6 cm/h and 30.3 cm/h, 

respectively. The deviations between the equilibrium adsorption model 

and the atrazine data are observed to be greater for the higher pore 

water velocity (lower detention time), as would be expected. The 

equilibrium model would overestimate the time till first appearance of 

the atrazine and underestimate the time necessary for the atrazine 

concentration to return to zero during elution (desorption). 

As observed in Figures 39 and 40, use of fitted dispersion 

coefficients provided improved description of the atrazine column data. 

The fitted dispersion coefficient (D̂  fitted̂ • hydrodynamic 

dispersion coefficient (D̂  - from Table 11) and the ratio of the two are 

shown in Table 16. Values for fitted were determined by adjusting the 

value of to minimize the sum of squared errors between the data and 

the model predictions. The ratio of fitted x̂ observed to 

increase from 2.4 to 5.9 for atrazine with increasing pore water 

velocity, which is necessary to account for the increased nonequilibrium 
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Table 16. Dispersion coefficients - hydrodynamic and fitted 

Pesticide Pore Water 
Velocity 
(cm/h) 

x̂,fitted 

cm̂ /h 

x̂,fitted/̂ x 

cm̂ /h 

Atrazine 

Atrazine 

Alachlor 

Alachlor 

10.6 

30.3 

10.6 

30.3 

23.1 

178 

25.2 

213 

9.7 

33.3 

9.7 

33.3 

2.4 

5.3 

2 . 6  

6.4 
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experienced with the higher pore water velocity. This points out that 

while the use of the fitted Parameter fits the experimental data well, 

this parameter is dependent on the pore water velocity and may not be 

utilized for prediction purposes at a different pore water velocity. It 

is observed that hysteresis of desorption needs to be incorporated to 

improve the description of the elution data using fitted* 

Lee et al. (1988) utilized a method proposed by Parker and Valocchi 

(1986) for determining fitted (̂ e eff̂  values. This method involves 

utilizing modeling parameters determined for a given set of experimental 

conditions and results in parameters that are a function of pore 

water velocity. Lee et al. (1988) found this method fairly successful 

for predicting breakthrough data at a pore water velocity different from 

that used to determine the model parameters. The necessary model 

parameters were not determined in this study, so this method could not be 

evaluated. 

Alachlor 

The alachlor data and the predictions utilizing the equilibrium 

adsorption model are shown in Figure 41 and 42 for pore water velocities 

of 10.6 and 30.3 cm/h, respectively. The variance of the equilibrium 

predictions from the alachlor data are observed to be greater at the 

higher pore water velocity. The deviations between the data and the 

equilibrium predictions appear to be greater than that observed for 

atrazine data. The ratio of fitted x̂ shown in Table 16) is 

observed to be greater for alachlor (at a given pore water velocity) than 
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for atrazine, which supports the visual observation that the alachlor 

experienced greater deviations than atrazine from equilibrium adsorption. 

Once again, the ratio of fitted for alachlor was greater at 

higher pore water velocities, indicating that value of fitted 

determined in this study) may not be used for predictive purposes at 

other pore water velocities. It is observed that inclusion of hysteresis 

of desorption would improve the description of the alachlor elution data 

using fitted' 

Nonequilibriiam Adsorption Modeling 

The model of Crittenden et al. (1986) was utilized to investigate 

the ability of a physical nonequilibrium model to describe / predict the 

atrazine and alachlor column data. This model has been utilized by 

several researchers to investigate nonequilibrium breakthrough data 

(Crittenden et al., 1986; Hutzler et al., 1986; Roberts et al., 1987). 

The model of Crittenden et al. (1986) assumes that preferential flow 

paths occur within the soil due to the presence of physical aggregates or 

aggregate type (diffusion limited) regions in the soil, with the 

intraaggregate diffusion causing the nonequilibrium shapes of the 

predicted breakthrough curves. For a general conceptualization of this 

diffusion limited physical nonequilibrium modeling approach see Figure 6. 

The model of Crittenden et al. (1986) requires input of an aggregate 

radius for the soil column. In the absence of physical aggregates, this 

becomes a difficult parameter to measure and it has been used as a 

fitting parameter. Hutzler et al. (1986) adjusted the aggregate radius 
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parameter to determine a best fit to column data which resulted in 

aggregate radii 7 to 20 times greater than the radii of the d̂ Q particle. 

Crittenden et al. (1986) utilized an aggregate radius 13 times greater 

than the d̂ Q/2 of the soil. 

Other parameters necessary for input into the model include the film 

transfer coefficient (kg) and the intraaggregate diffusion coefficient 

(Dp). The value of Dp is determined by dividing the free solution liquid 

diffusion coefficient (D̂ ) by the tortuosity factor (Xp). The value of 

D̂  for atrazine and alachlor was estimated by the method of Hayduk and 

Laudie as outlined by Tucker and Nelken (1982). The value of Tp utilized 

was 2 (Bear, 1972; Perkins and Johnston, 1963; Crittenden et al., 1986). 

The method for estimating the kg parameter was outlined by Hutzler et al. 

(1986) and will not be repeated here. Sensitivity analyses for specific 

column conditions by Crittenden et al. (1986), Roberts et al. (1987) and 

in this study showed the breakthrough curves to be relatively insensitive 

to the value for kg but more significantly affected by values used for 

aggregate radius and Dp. 

The Dp parameter, as outlined by Crittenden et al. (1986), was 

intended to account for diffusion in intraaggregate pore water (or 

aggregate type regions in the absence of physical aggregates). Several 

researchers have suggested that the rate limiting diffusion causing 

nonequilibrium solute transport (especially in the absence of physical 

aggregates) is diffusion into organic carbon content (Miller, 1984; 

Hutzler et al., 1986; Bouchard et al., 1988). Miller (1984) utilized 

completely mixed batch reactor data for sand aquifer material (f̂  ̂=• 
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0.014) and lindane to determine a value for Dg (diffusion into organic 

carbon content, as defined by Miller (1984)), The value of Dg determined 

11 P was 4.8 X 10" cm /s, which is several orders of magnitude lower than 

what would be predicted based on D^/fp. This appears to support the 

hypothesis of diffusion into organic carbon content as the diffusion 

limiting case in the absence of physical aggregates. Fundamentally, this 

may be a more acceptable explanation for nonequilibrium solute transport 

than assuming aggregate type regions in the absence of physical 

aggregates. 

Complete coverage of the Crittenden et al. (1986) model is beyond 

the scope of this effort. For additional information on the model, model 

parameters and estimation techniques, the reader is referenced to 

thorough treatments by Crittenden et al. (1986), Hutzler et al. (1986) 

and Roberts et al. (1987). For these modeling runs, 4 radial and 12 

axial collocation points were utilized. 

Model sensitivity analyses 

Sensitivity analyses of the nonequilibrium model for the aggregate 

radius and Dp were conducted. Major parameters utilized during the model 

runs are shown in Table 17. The model sensitivity analyses were 

conducted utilizing the atrazine column data for a pore water velocity of 

10.6 cm/h and the South Ames alluvial material (see Tables 11 and 12). 

A sensitivity analysis of the aggregate radius was evaluated by 

conducting model runs with ratios of aggregate radius to dgQ/2 of 10, 4 

and 1. The column parameters for these model runs are shown in Table 17 
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Pesticide Pore Water Water Aggregate 
Velocity Flow Radius 
(cm/h) (cm^/s) (cm) (cm/s) 

atrazine 

atrazine 

atrazine 

atrazine 

atrazine 

atrazine 

atrazine 

alachlor 

alachlor 

alachlor 

alachlor 

10.6 

10.6 

10.6 

10.6 

10.6 

30.3 

30.3 

10.6 

10.6 

30.3 

30.3 

0 .022  

0 .022  

0 .022  

0 .022  

0 .022  

0.063 

0.063 

0 .022  

0 .022  

0.063 

0.063 

0.29 

0 . 1 2  

0.03 

0.03 

0.03 

0 . 1 2  

0.03 

0 . 1 2  

0.03 

0 . 1 2  

0.03 

1.79 X 10-4 

-4 3.22 X 10" 

8.10 X 10 

8.10 X 10 

-4 

-4 

8.10 X 10'* 

4.56 X 10-4 

1.15 X 10-3 

2.85 X 10-4 

7.20 X 10-4 

4.06 X 10" 

1.02 X 10 -3 
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as ATLIOD, ATL4D and ATLID, respectively. The d^Q of the South Ames 

alluvial material was 0.058 cm. The results of these model runs and the 

experimental atrazine data are shown in Figure 43. It is observed that 

an aggregate radius of 4 times d^g/Z provides a good fit to the data. 

This ratio is low relative to values reported by Crittenden et al. (1986) 

and Hutzler et al, (1986) (7 to 20), However, no visual aggregates were 

observed for the column runs and the low silt and clay contents (< 3%) 

and high sand content (97%) would not suggest the presence of aggregate 

type regions in the soil column. The absence of aggregate type regions 

in this study was supported by the chloride breakthrough data which was 

not significantly affected by increases in pore water velocity (see Pg 

values in Table 11), 

A sensitivity analysis was conducted on the Dp value utilizing the 

atrazine column data at 10.6 cm/h. Throughout this sensitivity analysis 

the value of the aggregate radius was assumed to be equal to dgQ/2. The 

Dp value determined based on intraaggregate diffusion with a value of Tp 

of 2 was 2.58 X 10" cm /s. Assuming that Dp was rate limiting and the 

cause of the nonequilibrium breakthrough, the value of Dp was decreased 

(increasing the resistance to diffusion) by 2 orders of magnitude (1.6 x 

10"^ and 2.58 x 10"®). This analysis assumes the absence of significant 

aggregation in the soil and suggests diffusion occurs into aggregates 

(particles) with much greater resistance to diffusion than pore water 

(more than predicted by Tp alone), This scenario would be consistent 

with the conclusions of Miller (1984), Hutzler et al, (1986) and Bouchard 

et al. (1988) that, with no significant aggregation present, diffusion 
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into organic carbon content caused the nonequilibrium breakthrough curves 

observed and that the diffusion into the organic carbon content is 

significantly less than that predicted by D^/fp. Input parameters for 

the three model runs of this sensitivity analysis are shown in Table 17 

as ATLID, ATLDP2 and ATLDP3, respectively, and the results are shown in 

Figure 44. It was found that by utilizing a Dp value of 1.6 x 10"^ cra^/s 

and an aggregate radius equal to d^Q/2 that a good fit of the atrazine 

data was obtained. It is also observed that adjusting the aggregate 

radius over an order of magnitude provided similar column predictions as 

adjusting the Dp over 2 orders of magnitude. 

Atrazine 

The atrazine column data for a pore water velocity of 10.6 cm/h was 

evaluated during the model sensitivity analysis and good fits were found 

for two combinations of aggregate radius and Dp. For an aggregate radius 

of 0.03 cm (aggregate diameter equal to d^g) the optimal value of Dp was 

found to be 1.6 x 10"^ cm^/s (ATLDP2 in Table 17). For a Dp value of 

2.58 X 10" cm /s (estimated using Tp of 2), the optimal value of 

aggregate radius was observed to be 4 times the radius of the d^Q 

particle (ATL4D in Table 17). These two model runs and the atrazine 

column data are shown jointly in Figure 45. It is observed that these 

two model runs produced virtually identical results. The model 

predictions of the elution data were not as good as those for the 

breakthrough data, suggesting the need to include hysteresis of 

desorption into the modeling effort. 
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The optimal aggregate radius and optimal Dp value were utilized in 

an attempt to predict atrazine column data from a higher pore water 

velocity (30.3 cm/h). Inspection of the atrazine column data for these 

two pore water velocities (Figure 23) shows a leftward shift (earlier 

appearance) of the atrazine breakthrough curve with increased pore water 

velocity. The input parameters for these model runs are shown in Table 

17 as ATH4D and ATHDP for optimal aggregate radius and optimal Dp, 

respectively. The model results and the atrazine data are shown jointly 

in Figure 46. It is observed that the predicted values are very similar 

to the experimentally observed values. The ability of the model to 

utilize parameters determined at a lower pore water velocity to 

satisfactorily predict the breakthrough at a higher pore water velocity 

(including the leftward shift) is encouraging. 

Alachlor 

Modeling results for alachlor were conducted without fitting model 

parameters to the alachlor data. Instead, the optimal value for 

aggregate radius determined in the previous analysis (4 times d^g/Z) was 

utilized and the Dp value was determined for alachlor utilizing an 

estimated value for D^ and a value for Tp of 2. When utilizing an 

aggregate radius equal to d^Q/2, the Dp value for alachlor was decreased 

from (Di)aiachlor/^p the same ratio as that determined to be optimal 

for atrazine. The input parameters utilized to predict the alachlor data 

at a pore water velocity of 10.6 cm/h are shown in Table 17 as ALL4D and 

ALLDP, respectively. The model predictions and the alachlor column data 
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are shown jointly in Figure 47. Based on the fact that the model 

parameters were determined separate from the column data, the agreement 

between the predicted and observed data is quite good. The model results 

and alachlor data at the higher pore water velocity of 30.3 cm/h (ALH4D 

and ALHDP in Table 17) are shown jointly in Figure 48. As with the 

atrazine, the model was able to predict the leftward shift in the 

alachlor column data with increasing pore water velocity fairly 

successfully. For both pore water velocities, inclusion of hysteresis of 

desorption would have improved the model predictions of the elution data. 
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CONCLUSIONS AND RECOMMENDATIONS 

Batch and column studies were utilized to investigate the transport 

of atrazine and alachlor in an alluvial sand aquifer material. The 

ability of existing models to describe / predict the column data was 

investigated. The use of fluorescent dyes as surrogates (adsorbing 

tracers) for the pesticides was evaluated. The following conclusions 

were established during this research. 

Conclusions 

Adsorption isotherms were observed to be linear for atrazine (Cg < 

900 /ig/L) and alachlor (C^ < 700 pg/L). Alachlor was observed to be more 

highly adsorbed than atrazine with batch Kp values of 1.08 cm^/g and 0.40 

cm^/g, respectively. The column Kp values (determined by mass balance) 

were less than those determined in the batch studies (0.93 cm^/g for 

O 
alachlor and 0.30 cm /g for atrazine). 

The estimation techniques based on values of (Equations 25 and 

26) to predict values for the pesticides and the low organic content 

alluvial sand were fairly accurate. For atrazine, the predicted 

values were within 9% of batch values and within 38% of the column 

values. For alachlor, the predicted values were within 52% of 

the batch values and within 44% of the column values. 

No competitive adsorption was evidenced in batch studies for 

atrazine and alachlor for the concentrations and soils investigated. No 

effect of background ions on the level of adsorption was observed for 
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atrazine or alachlor in this study. 

Adsorption isotherms and column runs for the fluorescent dyes showed 

that rhodamine WT (RWT) experienced significantly more adsorption by the 

alluvial sand than fluorescein. Batch values of Kp (with no background 

g o 
ions added) for fluorescein and RWT were 0.33 cm /g and 4.5 cm /g, 

respectively. The isotherms for the dyes were observed to be linear at 

low concentrations (fig/L) with nonlinearity evidenced at higher 

concentrations (mg/L). 

Analysis of fluorescein batch tests was complicated by the presence 

of natural background fluorescence for the alluvial aquifer material. 

During column runs the problem of background fluorescence was not as 

significant. 

For the dyes, measured values were several orders of magnitude 

greater than predicted using estimation techniques (based on and 

fg^). This indicates that the polar and ionizable nature of the dyes 

violates the premise of nonpolar chemicals which were utilized in 

developing the empirical estimation techniques. The estimation 

techniques predicted that fluorescein would be more highly adsorbed than 

RWT (fluorescein has a higher than RWT), while the batch and column 

studies showed RWT to be more highly adsorbed than fluorescein. These 

results point out the need to apply estimation techniques with care. 

Background ions were observed to affect the level of RWT adsorption. 

Increasing valency and increasing concentration of cations were observed 

to most significantly affect the level of RWT adsorption. Batch tests 

and column runs for RWT with 10"^ n CaCl2 present resulted in values 
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greater by more than a factor of 2 than without CaCl2 added. It is 

hypothesized that increasing cation valency and concentration reduced the 

diffuse double layers about the alluvial aquifer particles and caused the 

increased adsorption observed. 

Comparison of Kp values (batch or column) for the pesticides and the 

dyes shows the following order of increasing adsorption on the alluvial 

aquifer material: fluorescein, atrazine, alachlor and RWT. This 

hierarchy suggests that if both dyes were utilized as adsorbing tracers 

in a solute transport study, atrazine and alachlor would be expected to 

appear after the fluorescein and before the RWT. 

The atrazine and alachlor breakthrough curves demonstrated a 

nonequilibrium shape (as observed visually and numerically). Increasing 

the pore water velocity from 10.6 to 30.3 cm/h resulted in earlier 

appearance (leftward shift) of the breakthrough curves for both 

pesticides. Decreasing the pore water velocity from 10.6 to 5.5 cm/h was 

not observed to significantly affect the appearance of the breakthrough 

curve for either pesticide. The chloride breakthrough curve was observed 

to be relatively independent of changes in pore water velocity, 

indicating that the changes in the breakthrough curves observed for the 

pesticides were not due to the hydrodynamics of pore water flow. 

Elution studies showed desorption to occur for both pesticides and 

both dyes. This indicates that physical adsorption was the dominant 

adsorption mechanism. More pore volumes were required to return to 

C/CO =0.0 than to reach C/CO - 1.0 for all column runs. Thus, 

hysteresis of desorption was evidenced for both pesticides and both dyes. 
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The RWT breakthrough curves were not the conventional sigmoidal 

breakthrough curve but instead leveled off at a C/CO value of 0.5 for a 

number of pore volumes prior to increasing C/CO values again. Mass 

balances of breakthrough and elution data showed conservation of mass, 

indicating that degradation was not the mechanism responsible for this 

two leg breakthrough curve. Treatment of the alluvial aquifer material 

to reduce the organic carbon content and/or the clay content resulted in 

decreases in RWT adsorption, but the two leg breakthrough curve was still 

evident. This suggests that both organic carbon content and clays are 

involved in adsorbing RWT and responsible for the two leg breakthrough 

curve. Additional study will be required to determine the mechanisms 

responsible for the two leg breakthrough curve observed for RWT. 

The batch Kp values for atrazine, alachlor and fluorescein were 

observed to be greater than Kp values determined from column runs. For 

RWT, however, the batch Kp values were lower than those determined from 

column runs. It was beyond the scope of this research to determined the 

mechanism(s) responsible for greater RWT adsorption in the column runs 

than in the batch studies. The same mechanism(s) may be responsible for 

the two leg breakthrough curves observed during column runs for RWT. One 

plausible mechanism that may account for the two leg breakthrough curve 

for RWT is the development of multiple layers of RWT during adsorption. 

Column studies (using RWT) indicated that the organic content was 

distributed throughout the sand size fractions and was attached to the 

sand particles in a sufficient manner to withstand complete removal by 

wet sieving or backwashing. The appearance of micron and submicron size 
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particles attached to various size fractions of sand particles was 

observed during SEM analysis. 

For RWT, increasing the pore water velocity from 11.7 cm/h to 34.1 

cm/h was not observed to affect the first leg of the breakthrough curve 

but resulted in earlier rise and steeper slope of the second leg of the 

breakthrough curve. This suggests that the mechanism responsible for the 

first leg of the RWT breakthrough curve was not rate limited but that the 

mechanism responsible for the second leg of the breakthrough curve was 

rate limited. 

Increasing the influent RWT concentration from 201 pg/L to 1950 /ig/L 

resulted in earlier breakthrough of the RWT. This is consistent with the 

nonlinear isotherm (N < 1.0) observed for RWT for the higher 

concentrations. 

Equilibrium models were not able to predict the exact shapes of 

breakthrough curves observed for atrazine or alachlor with increased 

deviations between the model results and the data observed at higher pore 

water velocities. Use of dispersion coefficients fitted to the column 

data improved the agreement between model results and experimental data, 

but the fitted dispersion coefficients were a function of the pore water 

velocity. Improved description of elution data could be obtained by 

incorporating hysteresis of desorption in the modeling efforts. 

Sensitivity analyses of the Crittenden et al. (1986) model showed 

that adjustment of either the aggregate radius or the intraaggregate 

(intraparticle) diffusion coefficient (Dp) could be utilized to fit the 

atrazine column data. In the absence of physical aggregates or 
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significant diffusion limited agglomerates of particles (as in this 

study), the concept of diffusion into organic carbon content (with 

increased diffusion resistance) as the cause of nonequilibrium solute 

transport is more fundamentally appealing. The results of this research 

appear to support the hypothesis of organic carbon content motivated 

nonequilibrium solute transport. 

Utilizing the model of Crittenden et al. (1986) and either the 

aggregate radius or the Dp values fitted for the atrazine column run at 

10.6 cm/h, good predictions of the experimental breakthrough curves for 

atrazine at 30.3 cm/h and for alachlor at 10.6 and 30.3 cm/h were 

achieved. The ability of the model to predict breakthrough curves 

(including the leftward shift for both pesticides at 30.3 cm/h) under 

different conditions than utilized for calibration is significant. 

Improved predictions of the elution curves could be obtained by 

incorporating hysteresis of desorption in the model. 

From a fundamental standpoint, the physical nonequilibrium model of 

Crittenden et al. (1986) showed improved description and prediction 

capabilities over the simple equilibrium model. From an applied 

standpoint, other uncertainties inherent in modeling solute transport at 

the field scale need to be considered (e.g., heterogeneities in hydraulic 

conductivity and organic carbon content, macropores, other reactions, 

etc.). The modeler must evaluate the relative uncertainty introduced by 

each of this elements and decide what level of sophistication is merited 

for modeling each element for the given set of conditions. 
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Recommendations for Future Research 

Based on the results of this research, the following elements are 

enumerated as requiring further research. 

1. Investigation of these pesticides and dyes with other soils and at 

the field scale. 

2. Investigation of other pesticides and aquifer materials. 

3. Investigation of other fluorescent dyes as adsorbing tracers. 

4. Further investigation of the mechanism(s) responsible for the two leg 

breakthrough curve for RWT and the greater adsorption in the column 

runs than in the batch tests for RWT. 

5. Investigation of desorption and hysteresis of desorption. 

6. Investigation of intraparticle diffusion into organic carbon content 

as it affects nonequilibrium solute transport. 

7. Further evaluation of adsorption models and their predictive ability. 
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APPENDIX A: BATCH DATÂ  

Pesticide Batch Data ̂  (see Table 6) 

BATA - batch, atrazine, South Ames 
BALA - batch, alachlor. South Ames 

Dve Batch Data (see Tables 8 and 10) 

BRA - batch, RWT, South Ames 
BFA - batch, fluorescein, South Ames 
BRH - batch, RWT, Hallets 
BRACA - batch, RWT, South Ames, calcium chloride 
Background ions 

This appendix contains the data as plotted and manipulated in the 
text. The study abbreviations (e.g., BATA) are as utilized in the 
text. For experimental conditions, see summary Tables in the text. 

O 
Pesticide data corrected for recovery efficiencies: 87.4% for 
atrazine and 84.3% for alachlor. 
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BATA 

CO (Mg/L) Ce (Mg/L) q (g/g) 

single solute 
25.0 21.2 7.6E-09 
25.0 22.2 5.5E-09 
50.0 36.2 2.8E-08 
75.0 63.5 2.3E-08 
75.0 54.7 4.1E-08 
200.0 155.3 8.9E-08 
500.0 400.7 2.0E-07 

1000.0 752.9 4.9E-07 
1000.0 934.1 1.3E-07 

binary solute 
25.0 21.3 7.4E-09 
50.0 40.6 1.9E-08 
75.0 63.9 2.2E-08 
200.0 166.3 6.7E-08 
200.0 178.3 4.3E-08 

1000.0 752.2 5.0E-07 
1000.0 882.6 2.3E-07 
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BALA. 

CO (/ig/L) Ce (pg/L) q (g/g) 

single solute 
25.0 16.8 1.6E-08 
25.0 20.2 9.5E-09 
50.0 28.1 4.4E-08 
75.0 48.6 5.3E-08 
75.0 51.1 4.8E-08 
200.0 124.7 1.5E-07 
200.0 123.7 1.5E-07 
500.0 352.0 3.0E-07 
1000.0 603.7 7.9E-07 
1000.0 666.7 6.7E-07 

binary solute 
25.0 19.7 l.lE-08 
25.0 17.6 1.5E-08 
50.0 34.6 3.1E-08 
75.0 56.2 3.8E-08 
75.0 53.4 4.3E-08 
200.0 126.6 1.5E-07 
200.0 138,3 1.2E-07 
1000.0 568.1 8.6E-07 
1000.0 660.6 6.8E-07 
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BRA 

CO (Mg/L) Ce (/ig/L) q (g/g) 

25.0 
25.0 

100.0 
100.0 
400.0 
400.0 
2500.0 
2500.0 
9500.0 
9500.0 

7.0 
7.0 
26.0 
26.0 
126.0 
123.0 
906.0 
875.0 
4200.0 
4100.0 

3.60E-08 
3.60E-08 
1.50E-07 
1.50E-07 
5.50E-07 
5.50E-07 
3.20E-06 
3.20E-06 
l.lOE-05 
l.lOE-05 



www.manaraa.com

BFA 

CO (pg/L) Ce (Mg/L) q (g/g) 

50.0 46.0 8.0E-09 
50.0 46.0 8.0E-09 
150.0 132.0 3.6E-08 
150.0 132.0 3.6E-08 
400.0 350.0 l.OE-07 
400.0 330.0 1.4E-07 
1000.0 860.0 2.8E-07 
1000.0 860.0 2.8E-07 
2500.0 2330.0 3.4E-07 
2500.0 2330.0 3.4E-07 
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BRH 

CO ( i i g /L )  Ce (Mg/L) q (g/g) 

50.0 20.0 6.0E-08 
50.0 22.0 5.6E-08 
150.0 66.0 1.7E-07 
150.0 60.0 1.8E-07 
400.0 168.0 4.6E-07 
400.0 174.0 4.5E-07 
1000.0 417.0 1.2E-06 
1000.0 434.0 l.lE-06 
2500.0 1220.0 2.6E-06 
2500.0 1220.0 2.6E-06 
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BRACA 

CO (/ig/L) Ce (pg/L) q (g/g) 

45.0 7.0 7.60E-08 
45.0 6.0 7.80E-08 
135.0 21.0 2.28E-07 
135.0 22.0 2.26E-07 
360.0 63.0 • 5.94E-07 
900.0 191.0 1.42E-06 
900.0 189.0 1.42E-06 
2250.0 562.0 3.38E-06 
2250.0 610.0 3.28E-06 
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Background Ions 

Chemical Concentration Ce (/ig/L) 
added added (M) 

MgS04 10-2 34.6 
35.7 
35.2 

MgS04 10-3 43.4 
42.9 
42.3 
44.0 

CaC12 10-2 26.9 
29.1 

"  "  2 8 . 0  
27.0 

CaC12 10-3 39.0 
38.5 
40.1 
40.0 

Blank n/a 44.5 
46.7 
46.2 

KCl 10-3 45.0 
46.2 
42.9 
44.0 

NaCl 10-3 49.5 
50.0 
48.9 
49.0 

CaS04 10-3 43.4 
41.7 
41.7 
41.0 

KBr 10-3 45.0 

NaCl 10-2 49.0 

NaHC03 10-3 48.0 
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APPENDIX B: COLUMN DATÂ  

Pesticide Column Data ̂  (see Table 11) 

CPAS - column, pesticides, South Ames, 5 cm/h 
CPAIO - column, pesticides, South Ames, 10 cm/h 
CPA30 - column, pesticides. South Ames, 30 cm/h 

Dve Column Data (see Tables 13 and 15) 

CRA column. RWT, South Ames 
CFA column, fluorescein, South Ames 
CRACA - column, RWT, South Ames, calcium chloride 
CRH column. RWT, Hallets 
CRAHP - column. RWT, South Ames, high PWV 
CRAHC - column. RWT, South Ames, high CO 
BW column. RWT, South Ames, backwashed (>75 /im) 
HT/8S0 - column. RWT, South Ames , heated (§ 850 °C 
BW-HT/550 - column, RWT, South Ames, backwashed and heated @ 550 °C 
BW-HT/850 - column, RWT, South Ames, backwashed and heated (3 850 °C 
GLBDS - column, RWT, glass beads 
WS - column, RWT, South Ames, wet sieved (> 300 /xm) 

This appendix contains the data as plotted and manipulated in the 
text. The study abbreviations (e.g., CPAS) are as utilized in the 
text. For experimental conditions, see summary Tables in the text. 

2 Pesticide data corrected for recovery efficiencies: 87.4% for 
atrazine and 84.3% for alachlor. 
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CPAS 

Atrazine 
v/vo C (/ig/L) C/CO 

0, ,37 0, ,0 0.00 
0, ,79 2, ,6 0.01 
1. ,22 34 .9 0.17 
2, ,08 120, .1 0.60 
2, ,51 125, ,9 0.63 
4, ,66 168, ,2 0.84 
5, ,73 144, ,2 0.72 
6, ,80 192, ,2 0.96 
7, ,44 153, ,3 0.77 
8, ,09 171, ,6 0.86 
9, ,79 179, ,6 0.90 

11. .93 196, ,8 0.98 
14, ,19 203, ,7 1.02 
15, ,90 161, ,3 0.81 
17, ,63 178, ,5 0.89 
20, ,19 93 .8 0.47 
21, ,90 35, ,1 0.18 
24, ,47 10, ,3 0.05 
27, ,04 5, ,6 0.03 
34, ,85 0, ,0 0.00 

Alachlor 
' (/ig/L) C/CO 

0, ,0 0, ,00 
0, .0 0, ,00 
4, .0 0, .02 
37, .1 0, .19 
53, .4 0, ,27 

117, ,2 0, ,59 
98, ,5 0, ,49 

147, ,1 0, ,74 
117, .4 0, ,59 
132, ,9 0, ,66 
143, ,5 0, ,72 
160. .1 0, ,80 
163, .7 0, ,82 
137. ,6 0, ,69 
159, .0 0. .79 
126, ,9 0. .63 
85. ,1 0. .43 
40. .2 0. .20 
26. .8 0. .13 
4. ,6 0. .02 
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CPAIO 

Atrazine 
v/vo C (pg/L) C/CO 

0.45 0, ,3 0, ,00 
0.91 8, ,7 0, ,04 
1.37 49, .5 0, ,25 
1.82 98, .2 0, ,49 
2.28 138, .4 0, .69 
3.18 152, ,2 0, ,76 
4.56 178, .5 0, ,89 
6.82 197, .9 0, ,99 
8.18 201, .4 1, ,01 
9.54 200, ,2 1, ,00 
10.9 185, ,4 0, .93 
11.82 185, ,4 0, ,93 
13.17 102, ,2 0, .51 
14.07 52, ,3 0. .26 
14.98 30. ,3 0, ,15 
17.25 18, ,4 0, .09 
20.44 4, ,7 0. .02 
24.06 1. ,8 0, .01 
29.39 0. 0 0. 00 

Alachlor 
(Pg/L) C/CO 

0, ,0 0. ,00 
0, ,0 0, ,00 
0, ,0 0, ,00 

11, .5 0, .06 
31, .9 0, .16 
56, .2 0, .28 

113, .0 0, .57 
160, .1 0, ,80 
163, .7 0, .82 
169, .6 0, .85 
162, .5 0, .81 
168, .4 0, .84 
154, .2 0, .77 
125. .7 0, .63 
87, ,4 0. .44 
48, .0 0, .24 
19. .5 0, .10 
11, 0 0. .06 
5. ,7 0, ,03 
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CPA30 

Atrazine 
v/vo C(Mg/L) C/CO 

0, ,28 0, .0 0, ,00 
0, .68 21, .1 0, ,11 
1, .09 68, .1 0, ,34 
1, .49 108, .9 0, ,54 
2, .30 152, .2 0, ,76 
4, ,32 176, .2 0, .88 
6, .34 191, .1 0, .96 
7, .55 197, .9 0, .99 
9. .57 183, .1 0, .92 

11, .19 179, .6 0, .90 
13, .31 187, .6 0, .94 
15, .73 189, .9 0, .95 
18, ,16 195, ,7 0, ,98 
20, .60 102, ,1 0, ,51 
22, ,22 32, .2 0, .16 
23, .84 15. .2 0, .08 
26, .30 7. ,2 0, ,04 
29, ,19 2. ,4 0, 01 
34. 02 1. ,3 0, 01 

Alachlor 
C(Mg/L) C/CO 

0, .0 0, ,00 
0, .0 0, ,00 

13, .5 0, ,07 
31, ,9 0, ,16 
87, .0 0. .43 

142, .3 0. .71 
176, .7 0, .88 
181, ,5 0, .91 
173, .2 0, .87 
167, .3 0, .84 
180, .3 0, .90 
185, .1 0, .93 
199, .3 1, .00 
167, .3 0, .84 
76, .6 0, .38 
47, .4 0, .24 
26, .9 0, .13 
13, .0 0, ,07 
7, .1 0. ,04 
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v/vo C (/ig/L) C/CO V/VO C (Mg/L) C/CO 

0.18 0 0, ,00 37, ,64 143 0.71 
0.73 0 0, .00 39. .09 150 0.75 
1.27 0 0, ,00 40.45 154 0.77 
1.82 0 0. ,00 41, .91 154 0.77 
2.45 0 0, ,00 43, ,27 157 0.78 
3.00 8 0. ,04 44, ,73 161 0.80 
3.55 17 0, ,08 46, .09 161 0.80 
4.09 28 0, ,14 47, .55 165 0.82 
4.64 50 0, ,25 48 .91 168 0.84 
5.27 57 0, ,28 50, .36 172 0.86 
5.82 69 0, ,34 51, .73 179 0.89 
6.36 78 0, ,39 53 .18 179 0.89 
6.91 83 0, .41 54 .55 183 0.91 
7.45 87 0, ,43 56 .00 179 0.89 
8.09 88 0, .44 57 .36 179 0.89 
8.64 91 0, .45 58 .82 179 0.89 
9.18 92 0, .46 60 .18 180 0.90 
9.73 93 0, .46 61, .64 186 0.93 
10.27 94 0, .47 63 .00 186 0.93 
10.91 97 0.48 65 .82 186 0.93 
11.45 97 0, .48 67 .27 186 0.93 
12.00 100 0. .50 68 .64 186 0.93 
12.55 100 0, .50 70 .09 190 0.95 
13.09 100 0, .50 71 .45 193 0.96 
13.73 100 0, .50 72 .91 193 0.96 
14.27 100 0. 50 74, .27 197 0.98 
14.82 98 0. 49 75, .73 197 0.98 
15.36 101 0. 50 77. .09 200 1.00 
15.91 101 0. 50 78, .55 200 1.00 
16.55 101 0. 50 79, .91 190 0.95 
17.91 101 0. 50 81. .36 147 0.73 
19.36 101 0. 50 82, .73 127 0.63 
20.73 101 0. 50 84, ,18 117 0.58 
22.18 101 0. 50 85, .55 113 0.56 
23.55 101 0. 50 87.00 110 0.55 
25.00 101 0. 50 88, .36 110 0.55 
26.36 101 0. 50 89. .82 107 0.53 
27.82 109 0. 54 91, ,18 107 0.53 
29.18 116 0. 58 92. ,64 103 0.51 
30.64 120 0. 60 94, 00 100 0.50 
32.00 124 0. 62 95. ,45 97 0.48 
33.45 128 0. 64 96. 82 90 0.45 
34.82 131 0. 65 98, ,27 87 0.43 
36.27 136 0. 68 99. ,64 83 0.41 



www.manaraa.com

203 

CRA - continued 

V/VO C (pg/L) C/CO V/VO C (/ig/L) C/CO 

101 09 77 0 38 144.73 23 0.11 
102 64 73 0 36 146 18 22 0.11 
103 91 70 0 35 147 55 22 0.11 
105 27 67 0 33 149 00 20 0.10 
106 73 63 0 31 150 36 19 0.09 
108 09 60 0 30 151 82 17 0.08 
109 55 58 0 29 153 18 16 0.08 
110 91 56 0 28 154 64 15 0.07 
112 36 55 0 27 156 00 15 0.07 
113 73 54 0 27 157 45 15 0.07 
115 18 53 0 26 158 82 15 0.07 
116 55 51 0 25 160 27 15 0.07 
118 00 49 0 24 161 64 14 0.07 
119 36 46 0 23 163 09 13 0.06 
120 82 44 0 22 164 45 14 0.07 
122 18 43 0 21 165 91 13 0.06 
123 64 42 0 21 167 27 12 0.06 
125 00 41 0 20 168 73 12 0.06 
126 45 40 0 20 170 09 12 0.06 
127 82 38 0 19 171 55 11 0.05 
129 27 37 0 18 172 91 11 0.05 
130 64 35 0 17 174 36 11 0.05 
132 09 31 0 15 175 73 11 0.05 
133 45 30 0 15 177 18 11 0.05 
134 91 29 0 14 180 00 11 0.05 
136 27 28 0 14 182 82 11 0.05 
137 73 27 0 13 185 64 10 0.05 
139 09 27 0 13 188 45 10 0.05 
140 55 26 0 13 191 27 10 0.05 
141 91 24 0 12 194 09 9 0.04 
143 36 23 0. 11 
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V/VO C 

0.07 
0.29 
0.51 
0.74 
0.96 
1.18 
1.40 
1 . 6 2  
1.84 
2 . 0 6  
2.50 
2.94 
3.16 
3.38 
3.60 
3.82 
4.04 
4.26 
4.51 
4.78 
5.03 
5.29 
5.54 
5.81 
6.06 
6.32 
6.57 
6.84 
7.09 
7.35 
7.60 
7.87 
8.12 
8.38 
8.63 
8.90 
9.15 
9.41 

C/CO 

0 .00  
0 .01  
0.04 
0.19 
0.43 
0 . 6 2  
0.75 
0.81 
0.84 
0.91 
0.91 
1 .00  
1 .00  
1.00 
1 .00  
1 .00  
1.00 
1 .00  
1.00  
0.97 
0 . 8 8  
0.73 
0 . 6 0  
0.54 
0.43 
0.35 
0.28 
0.24 
0 . 2 0  
0.16 
0.14 
0.12 
0.10  
0 .08  
0 .08  
0 . 0 6  
0 . 0 6  
0.04 

(/ig/1) 

0 
2 
9 
42 
97 
140 
168 
183 
190 
205 
205 
225 
225 
225 
225 
225 
225 
225 
225 
219 
198 
164 
136 
122 
97 
79 
64 
54 
45 
36 
31 
26 
23 
19 
17 
14 
13 
10 
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CRACA 

v/vo C (Mg/1) C/CO V/VO C (Mg/1) C/CO 

0.09 0 0, .00 89, .91 140 0.72 
0.66 0 0, ,00 92, ,83 147 0.75 
2.17 0 0, ,00 95. ,75 150 0.77 
3.58 1 0, ,01 98. 68 147 0.75 
5.09 8 0, ,04 101. 60 147 0.75 
6.51 19 0, ,10 104, ,53 147 0.75 
8.02 30 0, ,15 107. ,45 153 0.78 
9.43 41 0, ,21 110, ,38 153 0.78 
10.94 47 0, ,24 113. ,30 157 0.81 
12.36 56 0, ,29 116. ,23 157 0.81 
13.87 62 0, ,32 119. 15 164 0.84 
15.28 68 0, ,35 122, ,08 164 0.84 
16.79 72 0, ,37 125, ,00 164 0.84 
18.21 75 0, ,38 127, ,92 171 0.88 
19.72 78 0, ,40 130. ,85 167 0.86 
21.13 79 0, ,41 133. ,77 170 0.87 
22.64 80 0, ,41 136, ,70 177 0.91 
24.06 81 0, ,42 139. ,62 174 0.89 
25.57 80 0, ,41 142. ,55 177 0.91 
26.98 82 0. ,42 145, ,47 175 0.90 
28.49 83 0, ,43 148, ,40 179 0.92 
29.91 87 0, ,45 151, .32 182 0.93 
31.42 93 0. .48 154. .25 182 0.93 
32.83 93 0. .48 157, .17 180 0.92 
34.34 97 0, .50 160, .09 180 0.92 
35.75 100 0, .51 162, .92 184 0.94 
37.26 100 0, .51 165, .85 167 0.86 
40.19 103 0, .53 168 .77 136 0.70 
43.11 103 0, .53 171, .70 126 0.65 
46.04 103 0, .53 174, .62 119 0.61 
48.96 103 0, .53 177, .55 112 0.57 
51.89 103 0, ,53 180, .47 109 0.56 
54.81 107 0, .55 183, .40 106 0.54 
57.74 107 0, .55 186, .32 99 0.51 
60.66 117 0, ,60 192, .17 92 0.47 
63.58 123 0, .63 195, .09 89 0.46 
66.51 127 0. ,65 200, .94 82 0.42 
69.43 133 0, ,68 206, .79 75 0.38 
72.36 133 0, ,68 212, .64 65 0.33 
75.28 133 0, ,68 221, ,42 58 0.30 
78.21 133 0, ,68 224, ,34 53 0.27 
81.13 136 0. 70 227. ,26 49 0.25 
84.06 140 0. 72 230. 19 47 0.24 
86.98 140 0. 72 233, ,11 43 0.22 
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v/vo 

236.04 
247.74 
256.51 
265.28 
274.06 
279.91 
285.75 
291.60 
297.45 
303.30 
309.15 
315.00 
320.85 
326.70 
332.55 
338.40 
344.25 
350.09 
355.94 
361.79 
367.64 
373.49 

(pg/1) C/CO 

41 0.21 
41 0.21 
33 0.17 
30 0.15 
31 0.16 
30 0.15 
28 0.14 
28 0.14 
26 0.13 
24 0.12 
24 0.12 
21 0.11 
20 0.10 
19 0.10 
19 0.10 
18 0.09 
17 0.09 
17 0.09 
17 0.09 
16 0.08 
16 0.08 
15 0.08 
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CRH 

v/vo C (Mg/L) C/CO 

0.46 0 0.00 
1.23 0 0.00 
2.00 0 0.00 
2.77 0 0.00 
3.54 4 0.02 
4.31 13 0.07 
5.08 24 0.12 
5.85 34 0.17 
6.62 47 0.24 
8.15 64 0.32 
9.69 77 0.39 
11.23 84 0.42 
12.77 90 0.45 
15.08 96 0.48 
17.38 94 0.47 
19.69 97 0.49 
22.38 97 0.49 
25.08 98 0.49 
28.15 105 0.53 
30.46 112 0.56 
32.77 116 0.58 
35.08 125 0.63 
37.38 132 0.66 
39.69 140 0.70 
42.00 144 0.72 
44.31 144 0.72 
46.62 152 0.76 
48.92 160 0.80 
51.23 160 0.80 
53.54 168 0.84 
55.85 168 0.84 
58.15 176 0.88 
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CRAHP 

v/vo C (/ig/L) C/CO V/VO C (Pg/L) C/CO 

0.13 0 0. ,00 72, ,88 163 0.82 
0.78 0 0, ,00 73, ,88 150 0.76 
1.41 0 0, ,00 74, ,84 140 0.71 
2.06 1 0, .01 76, .47 132 0.67 
2.38 4 0, ,02 79, .75 112 0.57 
2.69 11 0, ,06 83, .00 87 0.44 
5.00 64 0, ,32 86, .28 72 0.36 
5.66 77 0, .39 89 .56 63 0.32 
6.31 81 0, .41 92 .84 50 0.25 
6.97 86 0, .43 96 .13 43 0.22 
7.63 86 0 .43 99 .41 38 0.19 
8.94 89 0 .45 102 .69 32 0.16 
10.25 93 0, .47 105 .97 29 0.15 
12.22 96 0, .48 112 .53 23 0.12 
13.53 96 0 .48 125 .66 18 0.09 
14.84 96 0 .48 132 .22 16 0.08 
16.16 96 0 .48 
17.47 96 0 .48 
19.09 94 0 .47 
20.75 96 0 .48 
22.38 99 0 .50 
24.03 105 0 .53 
25.66 114 0 .58 
27.31 125 0, .63 
28.94 134 0, .68 
30.59 145 0 .73 
32.22 155 0, .78 
33.88 160 0, ,81 
35.50 163 0, ,82 
37.16 170 0, ,86 
38.78 175 0, ,88 
42.06 183 0. 92 
45.34 187 0, ,94 
48.63 190 0, 96 
51.91 193 0. 97 
55.19 197 0. 99 
58.47 195 0. 98 
61.75 195 0. 98 
65.03 197 0. 99 
68.31 195 0. 98 
69.94 197 0. 99 
70.91 198 1. 00 
71.91 198 1. 00 
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CRAHC 

v/vo C (pg/L) C/CO 

0, .10 0 0, ,00 
0, .41 0 0. ,00 
0, .72 8 0, ,00 
1, .03 51 0, ,03 
1, .34 133 0, ,07 
1, .65 225 0. ,12 
2, .06 366 0, ,19 
2, .37 467 0, ,24 
2, .99 602 0, .31 
3, .61 700 0, ,36 
4, .23 750 0, ,38 
4, .95 770 0. ,39 
5, .57 780 0 .40 
7, .11 900 0, .46 
8, .76 960 0, .49 

11, .96 1130 0, .58 
15, .15 1370 0, .70 
18 .35 1570 0 .81 
21 .55 1700 0 .87 
24, .74 1750 0 .90 
27, .94 1820 0 .93 
32 .78 1880 0 .96 
34 .43 1900 0 .97 
35, .98 1900 0 .97 
37, .63 1300 0, .67 
38, .14 1000 0, .51 
41, .34 730 0 .37 
44, .54 530 0, .27 
47, .73 420 0, .22 
50, .93 370 0. ,19 
54, .12 300 0, ,15 
57, .32 240 0. ,12 
60, ,52 190 0, ,10 
63, ,71 165 0, ,08 
66. ,91 152 0. .08 
70, ,10 142 0, ,07 
73. ,30 125 0, ,06 
76. 49 112 0. ,06 
79. 69 97 0. 05 
82. 89 85 0. ,04 
86. 08 77 0. 04 
89. 28 68 0. 03 
92. 47 65 0. 03 
95. 67 61 0. 03 
98. 87 58 0. 03 



www.manaraa.com

210 

v/vo C (Mg/L) C/CO V/VO C (/ig/L) C/CO 

0.13 0 0 .00 64, ,62 174 0.89 
0.51 0 0, ,00 66, ,54 177 0.91 
1.28 0 0. .00 68, ,59 177 0.91 
2.05 0 0, ,00 70, ,51 181 0.93 
2.82 7 0, ,04 72, ,56 181 0.93 
3.72 19 0, ,10 74, ,49 184 0.94 
4.49 34 0, ,17 76, ,54 184 0.94 
5.26 40 0, ,21 78.46 184 0.94 
6.15 59 0, ,30 80, ,51 184 0.94 
6.92 66 0, ,34 82. ,44 180 0.92 
7.69 74 0, ,38 84, ,49 180 0.92 
8.46 80 0, ,41 86, ,41 180 0.92 
9.23 87 0, ,45 88, ,46 163 0.84 
10.13 87 0, ,45 90, .38 120 0.62 
10.90 91 0, ,47 92, ,44 107 0.55 
11.67 91 0, ,47 94, ,36 103 0.53 
12.44 94 0, ,48 96, ,41 100 0.51 
13.33 94 0. ,48 98, ,33 97 0.50 
14.10 94 0, ,48 100, ,38 93 0.48 
14.87 94 0, ,48 102, ,31 87 0.45 
16.92 94 0, ,48 104, ,36 80 0.41 
18.85 94 0. .48 106 .28 73 0.37 
20.90 94 0 .48 108 .33 60 0.31 
22.82 99 0 .51 110 .26 56 0.29 
24.87 109 0, .56 112 .31 53 0.27 
26.79 102 0, .52 114, .23 50 0.26 
28.85 109 0, .56 116, .28 47 0.24 
30.77 113 0, .58 118, .21 43 0.22 
32.82 120 0, ,62 120, .26 41 0.21 
34.74 123 0, ,63 122, .18 39 0.20 
36.79 127 0, ,65 124 .23 36 0.18 
38.72 133 0, ,68 126 .15 36 0.18 
40.77 140 0. ,72 128, .21 34 0.17 
42.69 147 0, ,75 130, .13 33 0.17 
44.74 153 0. ,78 132, .18 32 0.16 
46.67 160 0. 82 134, ,10 30 0.15 
48.72 167 0. 86 136, ,15 29 0.15 
50.64 174 0. .89 138, ,08 29 0.15 
52.69 167 0. 86 142, ,05 27 0.14 
54.62 167 0. 86 146. ,03 27 0.14 
56.67 167 0. 86 150. 00 24 0.12 
58.59 170 0. 87 153. 97 22 0.11 
60.64 170 0. 87 157. 95 21 0.11 
62.56 174 0. 89 161. 92 20 0.10 
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BW - continued 

v/vo 

165.90 
169.87 
173.85 
177.82 
181.79 
185.77 
189.74 
197.69 

(Pg/L) C/CO 

19 0.10 
19 0.10 
17 0.09 
14 0.07 
13 0.07 
12 0.06 
11 0.06 
11 0.06 
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HT/850 

v/vo C (Mg/1) C/CO V/VO C (/ig/1) C/CO 

0.10 0 0.00 33.88 65 0.33 
0.41 4 0.02 35.51 44 0.22 
0.71 12 0.06 37.04 33 0.17 
1.02 32 0.16 38.67 27 0.14 
1.33 48 0.24 40.20 19 0.10 
1.63 59 0.30 41.84 14 0.07 
2.04 67 0.34 43.37 13 0.07 
2.35 70 0.36 45.00 9 0.05 
2.65 75 0.38 46.53 7 0.04 
2.96 79 0.40 48.16 7 0.04 
3.27 82 0.42 49.69 6 0.03 
3.57 86 0.44 51.33 5 0.03 
3.88 93 0.47 52.86 5 0.03 
4.18 100 0.51 54.49 4 0.02 
4.49 107 0.55 56.02 3 0.02 
4.80 110 0.56 
5.20 113 0.58 
5.51 117 0.60 
6.12 123 0.63 
6.73 130 0.66 
7.35 137 0.70 
7.96 143 0.73 
8.67 147 0.75 
9.29 150 0.77 
9.90 150 0.77 
10.51 157 0.80 
11.12 157 0.80 
11.84 160 0.82 
12.45 164 0.84 
13.06 171 0.87 
13.67 174 0.89 
14.29 178 0.91 
15.00 178 0.91 
16.53 181 0.92 
18.06 181 0.92 
19.69 181 0.92 
21.22 181 0.92 
22.86 181 0.92 
24.39 185 0.94 
26.02 188 0.96 
27.55 188 0.96 
29.18 181 0.92 
30.71 142 0.72 
32.35 104 0.53 
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BW-HT/550 

v/vo C (pg/L) C/CO V/VO C (Mg/L) C/CO 

0.14 0 0, ,00 38, .75 120 0.62 
0.97 15 0, ,08 40, .42 103 0.53 
1.81 50 0. ,26 42, .22 83 0.43 
2.64 65 0, ,33 43, .89 67 0.34 
3.61 72 0, ,37 45, .56 57 0.29 
4.44 74 0, ,38 47, .36 47 0.24 
5.28 74 0, ,38 49, .03 41 0.21 
6.11 74 ; 0, ,38 52, .08 33 0.17 
6.94 83 0, ,43 54, .17 28 0.14 
7.78 87 0, .45 60 .69 20 0.10 
8.75 90 0, ,46 65 .00 16 0.08 
9.58 101 0. .52 69 .31 12 0.06 
10.42 111 0, .57 73 .61 11 0.06 
11.25 119 0. .61 77, .92 10 0.05 
12.08 126 0, .65 
13.06 129 0, .66 
13.89 133 0, ,68 
14.72 130 0, ,67 
15.56 136 0, ,70 
16.39 140 0, ,72 
17.22 143 0. ,73 
18.06 147 0, .75 
18.89 153 0, .78 
19.72 153 0, .78 
20.56 157 0, .81 
21.53 157 0, ,81 
22.36 160 0, ,82 
23.19 164 0. ,84 
24.03 164 0, ,84 
25.00 167 0, ,86 
25.83 170 0. ,87 
26.67 174 0. 89 
27.50 174 0. 89 
28.33 174 0. 89 
29.31 177 0, ,91 
30.14 177 0. ,91 
30.97 177 0, ,91 
31.81 181 0, ,93 
32.64 181 0, ,93 
33.61 184 0, ,94 
34.44 184 0, ,94 
35.28 167 0, ,86 
36.94 143 0, ,73 
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BW-HT/850 

V/VO C (Pg/L) C/CO 

0.10 0 0.00 
0.72 5 0.03 
1.03 26 0.13 
1.34 63 0.32 
1.65 109 0.55 
2.37 130 0.66 
2.99 143 0.72 
3.61 167 0.84 
4.23 181 0.91 
4.85 194 0.98 
6.49 198 1.00 
8.35 198 1.00 
10.31 167 0.84 
11.24 55 0.28 
12.16 32 0.16 
13.09 16 0.08 
14.02 11 0.06 
14.95 9 0.05 
18.14 6 0.03 
21.44 3 0.02 
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GLBDS 

V/VO C 

0.26 
0 . 6 6  
1.05 
1.45 
1,84 
2.24 
2.76 
3.16 
3.55 
4.08 
4.47 
4.87 
5.26 
5.66 
6.05 
6.45 
6.84 
7.37 
7.76 
8.16 
8.55 
8.95 

C/CO 

0.03 
0.35 
0.72 
0.84 
0.89 
0.94 
0.93 
0.96 
0.99 
1.00 
1.00 
0.95 
0.56 
0.29 
0.21  
0.15 
0.12  
0.10 
0 .08  
0.07 
0 .06  
0.05 

(Pg/L) 

6 
67 
140 
163 
173 
183 
180 
187 
193 
194 
194 
185 
109 
57 
4̂0 

• 30 
23 
20 
16 
13 
11 
10 
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ws 

v/vo C (pg/L) C/CO 

0.14 0 0.00 
1.43 0 0.00 
2.29 10 0.05 
3.29 26 0.13 
4.14 48 0.25 
5.00 61 0,31 
5.86 67 0.34 
6.71 71 0.36 
7.71 73 0.37 
9.86 85 0.44 
12.14 92 0.47 
14.29 99 0.51 
16.57 99 0.51 
21.00 99 0.51 
25.43 99 0.51 
29.86 106 0.54 
34.29 116 0.59 
38.71 123 0.63 
43.14 133 0.68 
47.57 147 0.75 
52.00 160 0.82 
56.43 164 0.84 
60.86 170 0.87 
65.29 177 0.91 
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